CRITERIA FOR THE OSCILLATION OF SECOND ORDER NONLINEAR DYNAMIC INCLUSIONS WITH DISTRIBUTED DEVIATING ARGUMENTS

TitleCRITERIA FOR THE OSCILLATION OF SECOND ORDER NONLINEAR DYNAMIC INCLUSIONS WITH DISTRIBUTED DEVIATING ARGUMENTS
Publication TypeJournal Article
Year of Publication2016
AuthorsGRACE, SAIDR, HASSAN, TAHERS
Secondary TitleCommunications in Applied Analysis
Volume20
Issue1
Start Page1
Pagination12
Date Published01/2016
Type of Workscientific: mathematics
ISSN1083–2564
AMS34C10, 34C15, 34K11, 34N05, 39A10
Abstract

In this paper we investigate some new criteria for the oscillation of second order nonlinear inclusions with distributed arguments on time scales. We establish the case of strongly superlinear and the case strongly sublinear subject to various conditions.

URLhttp://www.acadsol.eu/en/articles/20/1/1.pdf
DOI10.12732/caa.v20i1.1
Short TitleOSCILLATION CRITERIA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. P. Agarwal, S. R. Grace and D. O’Regan, On nonoscillatory solutions of differential inclusions, Proc. Amer. Math. Soc. 131 (2003), 129–140. 
[2] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation criteria for sublinear and superlinear second order differential inclusions, Mem. Diff. Eqns. Math. Physic. 28 (2008), 1–12. 
[3] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theormes for second order differential inclusions, Int. J. Dynamic Sys. Diff. Eqns. 1 (2007), 85–88. 
[4] R. P. Agarwal, S. R. Grace and D. O’Regan, Some nonoscillation criteria for inclusions, J. Aust. Math. Soc. 80 (2006), 1–12. 
[5] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation criteria for second order differential inclusions, Adv. Stud. Contem. Math. 16 (2008), 47–56. 
[6] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation, Canadian Appl. Math. Quart. 13 (2005), 1–17. 
[7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001. 
[8] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003. 
[9] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities, Appl. Anal. Discrete Math. 59 (2009), 242–252. 
[10] T. Candan, Oscillation of second order nonlinear neutral dynamic equations on time scales with distributed deviating arguments, Comput. Math. Appl. 62 (2011), 471–491. 
[11] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of second order functional dynamic equations, Int. J. Difference Equ. 5 (2010), 1–19. 
[12] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), 51–68. 
[13] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Difference Equ. 3 (2008), 227–245. 
[14] S. R. Grace, R. P. Agarwal and D. O’Regan, A selection of oscillation criteria for second order differential inclusions, Appl. Math. Letters 22 (2009), 153–158. 
[15] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463–3471. 
[16] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl. 345 (2008), 176–185. 
[17] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput. 217 (2011), 5285–5297. OSCILLATION CRITERIA 11 
[18] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Adv. Difference Equ. 2012, 2012:171, 1–13. 
[19] T. S. Hassan, L. Erbe and A. Peterson, Oscillation of second order superlinear dynamic equations with damping on time scales, Comput. Math. Appl. 59 (2010), 550–558. 
[20] T. S. Hassan, L. Erbe and A. Peterson, Oscillation criteria for second order sublinear dynamic equations with damping term, J. Difference Equ. Appl. 17 (2011), 505–523. 
[21] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with $p$-Laplacian and nonlinearities given by Riemann-Stieltjes integrals. J. Korean Math. Soc. 49 (2012), 1017–1030. 
[22] Y. S¸ahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. 63 (2005), 1073–1080. 
[23] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005), 375–387. 
[24] C. Tuncay, Oscillation criteria for second order nonlinear neutral dynamic equations with distributed deviating arguments on time scales, Adv. Difference Equ. 2013, 2013:112, 1–8.