REFERENCES
[1] R. P. Agarwal, S. R. Grace and D. O’Regan, On nonoscillatory solutions of differential inclusions, Proc. Amer. Math. Soc. 131 (2003), 129–140.
[2] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation criteria for sublinear and superlinear second order differential inclusions, Mem. Diff. Eqns. Math. Physic. 28 (2008), 1–12.
[3] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theormes for second order differential inclusions, Int. J. Dynamic Sys. Diff. Eqns. 1 (2007), 85–88.
[4] R. P. Agarwal, S. R. Grace and D. O’Regan, Some nonoscillation criteria for inclusions, J. Aust. Math. Soc. 80 (2006), 1–12.
[5] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation criteria for second order differential inclusions, Adv. Stud. Contem. Math. 16 (2008), 47–56.
[6] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation, Canadian Appl. Math. Quart. 13 (2005), 1–17.
[7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.
[8] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
[9] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities, Appl. Anal. Discrete Math. 59 (2009), 242–252.
[10] T. Candan, Oscillation of second order nonlinear neutral dynamic equations on time scales with distributed deviating arguments, Comput. Math. Appl. 62 (2011), 471–491.
[11] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of second order functional dynamic equations, Int. J. Difference Equ. 5 (2010), 1–19.
[12] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), 51–68.
[13] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Difference Equ. 3 (2008), 227–245.
[14] S. R. Grace, R. P. Agarwal and D. O’Regan, A selection of oscillation criteria for second order differential inclusions, Appl. Math. Letters 22 (2009), 153–158.
[15] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463–3471.
[16] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl. 345 (2008), 176–185.
[17] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput. 217 (2011), 5285–5297. OSCILLATION CRITERIA 11
[18] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Adv. Difference Equ. 2012, 2012:171, 1–13.
[19] T. S. Hassan, L. Erbe and A. Peterson, Oscillation of second order superlinear dynamic equations with damping on time scales, Comput. Math. Appl. 59 (2010), 550–558.
[20] T. S. Hassan, L. Erbe and A. Peterson, Oscillation criteria for second order sublinear dynamic equations with damping term, J. Difference Equ. Appl. 17 (2011), 505–523.
[21] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with $p$-Laplacian and nonlinearities given by Riemann-Stieltjes integrals. J. Korean Math. Soc. 49 (2012), 1017–1030.
[22] Y. S¸ahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. 63 (2005), 1073–1080.
[23] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005), 375–387.
[24] C. Tuncay, Oscillation criteria for second order nonlinear neutral dynamic equations with distributed deviating arguments on time scales, Adv. Difference Equ. 2013, 2013:112, 1–8.