REFERENCES
[1] A. R. Adem and C. M. Khalique, Symmetry reductions, exact solutions and
coservation laws of a new coupled KdV system, Communications in Nonlinear
Science and Numerical Simulation, 17 (2012), 3465-3475.
[2] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering, Volume 149, Cambridge University Press, 1991.
[3] M. Wadati, Stochastic korteweg-de vries equation, Journal of the Physical Society
of Japan, 52, No. 8 (1983), 2642-2648.
[4] H. Sanuki, K. Konno, M. Wadati, Relationships among inverse method, backlund
transformation and an infinite number of conservation laws, Progress of
Theoretical Physics, 53, No. 2 (1975), 419-436.
[5] K. Konno, M. Wadati, Simple derivation of backlund transformation from riccati
form of inverse method, Progress of Theoretical Physics, 53, No. 6 (1975), 1652-
1656.
[6] M. A. Salle, V. B. Matveev, Darboux Transformations and Solitons, Springer,
1991.
[7] F. Cariello, M. Tabor, Painleve expansions for nonintegrable evolution equations,
Physica D: Nonlinear Phenomena, 39, No. 1 (1989), 77-94.
[8] M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to
exact solutions of nonlinear equations in mathematical physics, Physics Letters
A, 216, No. 1 (1996), 67-75.
[9] Q. Zhao, S. Liu, S. Liu, Z. Fu, Jacobi elliptic function expansion method and
periodic wave solutions of nonlinear wave equations, Physics Letters A, 289, No.
1 (2001), 69-74.
[10] J. Li, L. Zhang, Bifurcations of traveling wave solutions in generalized
pochhammer-chree equation, Chaos, Solitons and Fractals, 14, No. 4 (2002),
581-593.
[11] M. Wang, Y. Zhou, Y. Wang, Periodic wave solutions to a coupled KdV equations
with variable coefficients, Physics Letters A, 308, No. 1 (2003), 31-36.
[12] J.-L. Zhang, M.-L. Wang, Y.-M. Wang, Z.-D. Fang, The improved f-expansion
method and its applications, Physics Letters A, 350, No. 1 (2006), 103-109.
[13] D. Kaya, S. M. El-Sayed, An application of the ADM to seven-order sawadakotara
equations, Applied Mathematics and Computation, 157, No. 1 (2004), 93-
101.
[14] Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of
nonlinear equations, Physics Letters A, 356, No. 2 (2006), 124-130.
[15] H. Xu, J. Cang, S.J. Liao, Y. Tang, Series solution of nonlinear Riccati differential
equations with fractional order, Chaos Sol. Frac., 40 (2009), 1-9.
[16] S.J. Liao, Y.Y. Wu, Solving the one loop solution of the Vakhnenko equation by
means of the homotopy analysis method, Chaos Solit. Frac., 23 (2004), 1733-
1740.
[17] Y. Bouremel, Explicit series solution for the Glauert-jet problem by means of the
homotopy analysis method, International J. Non. Lin. Sci. Numer. Simulat., 12
(2007), 714-724.
[18] H. Zhang, L. Song, Application of homotopy analysis method to fractional KdV
Burgers-Kuramoto equation, Physics Lett. A, 367 (2007), 88-94.
[19] S. Abbasbandy, The application of homotopy analysis method to solve a generalized
Hirota-Satsuma Coupled KdV equation, Physics Lett. A, 361 (2007),
478-483.
[20] S. Abbasbandy, The application of homotopy analysis method to nonlinear equation
arising in heat transfer, Physics Lett. A, 360 (2006), 109-113.
[21] K. Yabushita, K. Tsuboi, M. Yamashita, An analytic solution of projectile motion
with the quadratic resistance law using the homotopy analysis method,
Jurnal of Phys. A, 40 (2007), 8403-8416.
[22] F. Noori, G. Domairry, H. Nemati, M. Hassani, M.M. Tabar, An analytical solution
for boundary layer flow of a nanofluid past a stretching sheet, International
J. Ther. Sci. 48 (2011), 1-8.
[23] C.J. Nassar, J.F. Revelli, R.J. Bowman, Application of the homotopy analysis
method to the Poisson-Boltzmann equation for semiconductor devices, International
J. Non. Lin. Sci. Numer. Simulat., 16 (2011), 2501-2512.
[24] W. Zhen, Z. Li, Z.H. Qing, Solitary solution of discrete mKdV equation by
homotopy analysis method, Communication Theor. Phys., 49 (2008), 1373-1378.
[25] A. Alawneh, M. Zurigat, S. Momani, Z. Odibat, The homotopy analysis method
for handling systems of fractional differential equations, Applied Math. Model.,
34 (2010), 24-35.
[26] M. Khan, M. Ayub, T. Hayat, On the analytical solutions of an Oldroyd 6-
constants fluid, International J. Engr. Sci., 42 (2004), 123-135.
[27] M. Khan, S. Asghar, T. Hayat, Homotopy analysis of MHD flows of an Oldroyd
8-constant fluid, Acta Mech., 168 (2004), 213-232.
[28] M. Khan, M. Ayub, T.Haya t, On nonlinear flows with slip boundary condition,
ZAMP, 56 (2005), 1012-1029.
[29] Hardik S. Patel, R. Meher, Application of Laplace Adomian Decomposition
Method for the soliton solutions of Boussinesq-Burger equations, Int. J. of Adv.
in App. Math. and Mech., 3, No. 2 (2015), 50-58.
[30] A.K. Gupta, S. Saha Ray, Comparison between homotopy perturbation method
and optimal homotopy asymptotic method for the soliton solutions of BoussinesqBurger
equations, Computers and Fluids, 103 (2014), 34-41.