REFERENCES

[1] A. R. Adem and C. M. Khalique, Symmetry reductions, exact solutions and

coservation laws of a new coupled KdV system, Communications in Nonlinear

Science and Numerical Simulation, 17 (2012), 3465-3475.

[2] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and

Inverse Scattering, Volume 149, Cambridge University Press, 1991.

[3] M. Wadati, Stochastic korteweg-de vries equation, Journal of the Physical Society

of Japan, 52, No. 8 (1983), 2642-2648.

[4] H. Sanuki, K. Konno, M. Wadati, Relationships among inverse method, backlund

transformation and an infinite number of conservation laws, Progress of

Theoretical Physics, 53, No. 2 (1975), 419-436.

[5] K. Konno, M. Wadati, Simple derivation of backlund transformation from riccati

form of inverse method, Progress of Theoretical Physics, 53, No. 6 (1975), 1652-

1656.

[6] M. A. Salle, V. B. Matveev, Darboux Transformations and Solitons, Springer,

1991.

[7] F. Cariello, M. Tabor, Painleve expansions for nonintegrable evolution equations,

Physica D: Nonlinear Phenomena, 39, No. 1 (1989), 77-94.

[8] M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to

exact solutions of nonlinear equations in mathematical physics, Physics Letters

A, 216, No. 1 (1996), 67-75.

[9] Q. Zhao, S. Liu, S. Liu, Z. Fu, Jacobi elliptic function expansion method and

periodic wave solutions of nonlinear wave equations, Physics Letters A, 289, No.

1 (2001), 69-74.

[10] J. Li, L. Zhang, Bifurcations of traveling wave solutions in generalized

pochhammer-chree equation, Chaos, Solitons and Fractals, 14, No. 4 (2002),

581-593.

[11] M. Wang, Y. Zhou, Y. Wang, Periodic wave solutions to a coupled KdV equations

with variable coefficients, Physics Letters A, 308, No. 1 (2003), 31-36.

[12] J.-L. Zhang, M.-L. Wang, Y.-M. Wang, Z.-D. Fang, The improved f-expansion

method and its applications, Physics Letters A, 350, No. 1 (2006), 103-109.

[13] D. Kaya, S. M. El-Sayed, An application of the ADM to seven-order sawadakotara

equations, Applied Mathematics and Computation, 157, No. 1 (2004), 93-

101.

[14] Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of

nonlinear equations, Physics Letters A, 356, No. 2 (2006), 124-130.

[15] H. Xu, J. Cang, S.J. Liao, Y. Tang, Series solution of nonlinear Riccati differential

equations with fractional order, Chaos Sol. Frac., 40 (2009), 1-9.

[16] S.J. Liao, Y.Y. Wu, Solving the one loop solution of the Vakhnenko equation by

means of the homotopy analysis method, Chaos Solit. Frac., 23 (2004), 1733-

1740.

[17] Y. Bouremel, Explicit series solution for the Glauert-jet problem by means of the

homotopy analysis method, International J. Non. Lin. Sci. Numer. Simulat., 12

(2007), 714-724.

[18] H. Zhang, L. Song, Application of homotopy analysis method to fractional KdV

Burgers-Kuramoto equation, Physics Lett. A, 367 (2007), 88-94.

[19] S. Abbasbandy, The application of homotopy analysis method to solve a generalized

Hirota-Satsuma Coupled KdV equation, Physics Lett. A, 361 (2007),

478-483.

[20] S. Abbasbandy, The application of homotopy analysis method to nonlinear equation

arising in heat transfer, Physics Lett. A, 360 (2006), 109-113.

[21] K. Yabushita, K. Tsuboi, M. Yamashita, An analytic solution of projectile motion

with the quadratic resistance law using the homotopy analysis method,

Jurnal of Phys. A, 40 (2007), 8403-8416.

[22] F. Noori, G. Domairry, H. Nemati, M. Hassani, M.M. Tabar, An analytical solution

for boundary layer flow of a nanofluid past a stretching sheet, International

J. Ther. Sci. 48 (2011), 1-8.

[23] C.J. Nassar, J.F. Revelli, R.J. Bowman, Application of the homotopy analysis

method to the Poisson-Boltzmann equation for semiconductor devices, International

J. Non. Lin. Sci. Numer. Simulat., 16 (2011), 2501-2512.

[24] W. Zhen, Z. Li, Z.H. Qing, Solitary solution of discrete mKdV equation by

homotopy analysis method, Communication Theor. Phys., 49 (2008), 1373-1378.

[25] A. Alawneh, M. Zurigat, S. Momani, Z. Odibat, The homotopy analysis method

for handling systems of fractional differential equations, Applied Math. Model.,

34 (2010), 24-35.

[26] M. Khan, M. Ayub, T. Hayat, On the analytical solutions of an Oldroyd 6-

constants fluid, International J. Engr. Sci., 42 (2004), 123-135.

[27] M. Khan, S. Asghar, T. Hayat, Homotopy analysis of MHD flows of an Oldroyd

8-constant fluid, Acta Mech., 168 (2004), 213-232.

[28] M. Khan, M. Ayub, T.Haya t, On nonlinear flows with slip boundary condition,

ZAMP, 56 (2005), 1012-1029.

[29] Hardik S. Patel, R. Meher, Application of Laplace Adomian Decomposition

Method for the soliton solutions of Boussinesq-Burger equations, Int. J. of Adv.

in App. Math. and Mech., 3, No. 2 (2015), 50-58.

[30] A.K. Gupta, S. Saha Ray, Comparison between homotopy perturbation method

and optimal homotopy asymptotic method for the soliton solutions of BoussinesqBurger

equations, Computers and Fluids, 103 (2014), 34-41.