ABSTRACT: Here is studied with rates the fuzzy uniform and L_p, $p \geq 1$, convergence of a sequence of fuzzy positive linear operators to the fuzzy unit operator acting on spaces of fuzzy differentiable functions. This is done quantitatively via fuzzy Korovkin type inequalities involving the fuzzy modulus of continuity of a fuzzy derivative of the engaged function. From there we deduce general fuzzy Korovkin type theorems with high rate of convergence. The surprising fact is that basic real positive linear operator simple assumptions enforce here the fuzzy convergences. At the end we give applications. Our results are univariate and multivariate. The assumptions are minimal and natural fulfilled by almost all example – fuzzy positive linear operators.

AMS (MOS) Subject Classification: 26E50, 28E10, 41A17, 41A25, 41A36, 47S40

1. INTRODUCTION

Motivation for this work are Anastassiou [2], Anastassiou [4], Anastassiou [5], Anastassiou and Gal [7], Korovkin [14], Shisha and Mond [15]. In fact this is continuation of Anastassiou [4], Anastassiou [5]. Here first we translate the necessary measure theory approximation results from Anastassiou [2] into the language of real positive linear operators, then by combining the facts, e.g. use of Proposition 1, we transfer results to the fuzzy level.
Applications are on univariate and multivariate Bernstein operators. At the beginning we provide all necessary fuzzy terminology, definitions and theorems we use here. In that background section we prove some results that they stand by themselves, such as in positivity. The basic ingredient to establish our results it the bridge between real operators to fuzzy ones. It is the natural realization condition: Assumption 1, see (17). This is fulfilled by almost all example positive operators, in fact by all summation and integration operators: real and fuzzy. The concept of fuzzy positivity we use is the natural analog of the real positivity. The same thing with linearity. We hope we contribute to the development of Fuzzy Approximation Theory and Fuzzy Functional Analysis.

2. BACKGROUND

We start with

Definition 1. (see Wu and Gong [17]) Let $ \mu : \mathbb{R} \to [0, 1]$ with the following properties:

(i) is normal, i.e., $\exists x_0 \in \mathbb{R}; \mu(x_0) = 1$.
(ii) $\mu(\lambda x + (1 - \lambda)y) \geq \min\{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in [0, 1]$ (μ is called a convex fuzzy subset).
(iii) μ is upper semicontinuous on \mathbb{R}, i.e., $\forall x_0 \in \mathbb{R}$ and $\forall \varepsilon > 0, \exists$ neighborhood $V(x_0): \mu(x) \leq \mu(x_0) + \varepsilon, \forall x \in V(x_0)$.
(iv) The set $\text{supp}(\mu)$ is compact in \mathbb{R} (where $\text{supp}(\mu) := \{x \in \mathbb{R}; \mu(x) > 0\}$).

We call μ a fuzzy real number. Denote the set of all μ with \mathbb{R}_F.

E.g., $\mathcal{X}_{\{x_0\}} \in \mathbb{R}_F$, for any $x_0 \in \mathbb{R}$, where $\mathcal{X}_{\{x_0\}}$ is the characteristic function at x_0.

For $0 < r \leq 1$ and $\mu \in \mathbb{R}_F$ define $[\mu]_r := \{x \in \mathbb{R}; \mu(x) \geq r\}$ and

$$[\mu]^0 := \{x \in \mathbb{R} : \mu(x) > 0\}.$$

Then it is well known Goetschel et al [10] that for each $r \in [0, 1]$, $[\mu]_r$ is a closed and bounded interval of \mathbb{R}. For $u, v \in \mathbb{R}_F$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$[u \oplus v]^r = [u]^r + [v]^r, \quad [\lambda \odot u]^r = \lambda [u]^r, \quad \forall r \in [0, 1],$$

where $[u]^r + [v]^r$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda [u]^r$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., Kaleva [11]). Notice $1 \odot u = u$ and it holds $u \oplus v = v \oplus u, \lambda \odot u = u \odot \lambda$.

If $0 \leq r_1 \leq r_2 \leq 1$ then $[u]_{r_2} \subseteq [u]_{r_1}$. Actually $[u]^r = [u_-(r), u_+(r)]$, where $u_-(r) \leq u_-(r), u(r), u_+(r) \in \mathbb{R}, \forall r \in [0, 1]$. Based on Goetschel et al [10] we can then identify any $u \in \mathbb{R}_F$ with the parametrized representation $\{(u_-(r), u_+(r)) |$
0 \leq r \leq 1\}. We denote \(u \lesssim v \) iff \(u^{(r)}_- \leq v^{(r)}_- \) and \(u^{(r)}_+ \leq v^{(r)}_+ \), all \(r \in [0,1] \).

Define

\[
D: \mathbb{R}_F \times \mathbb{R}_F \to \mathbb{R}_+
\]

by

\[
D(u,v) := \sup_{r \in [0,1]} \max\{|u^{(r)}_- - v^{(r)}_-|, |u^{(r)}_+ - v^{(r)}_+|\},
\]

where \([v]^r = [v^{(r)}_-, v^{(r)}_+] \); \(u, v \in \mathbb{R}_F \). We have that \(D \) is a metric on \(\mathbb{R}_F \). Then \((\mathbb{R}_F, D)\) is a complete metric space, see Wu and Ma [16], with the properties

\[
D(u \oplus w, v \oplus w) = D(u,v), \quad \forall u, v, w \in \mathbb{R}_F,
\]

\[
D(k \odot u, k \odot v) = |k|D(u,v), \quad \forall u, v \in \mathbb{R}_F, \quad \forall k \in \mathbb{R},
\]

\[
D(u \oplus v, w \oplus e) \leq D(u,w) + D(v,e), \quad \forall u, v, w, e \in \mathbb{R}_F.
\]

Let \(f, g: U \to \mathbb{R}_F, U \subseteq (M,d) \) metric space, be fuzzy real number valued functions. The distance between \(f, g \) is defined by

\[
D^*(f,g) := \sup_{x \in U} D(f(x),g(x)).
\]

Denote \([f]^r = [f^{(r)}_-, f^{(r)}_+] \) for \([f(x)]^r = [f^{(r)}_-(x), f^{(r)}_+(x)] \), \(\forall x \in U, r \in [0,1] \).

We need

Lemma 1. (Anastassiou and Gal [6]) For any \(a, b \in \mathbb{R} \): \(ab \geq 0 \) and any \(u \in \mathbb{R}_F \) we have

\[
D(a \odot u, b \odot u) \leq |a - b| \cdot D(u, \tilde{o}),
\]

where \(\tilde{o} \in \mathbb{R}_F \) is defined by \(\tilde{o} := \chi_{\{0\}} \).

Lemma 2. (Anastassiou and Gal [6])

(i) If we denote \(\tilde{o} := \chi_{\{0\}} \), then \(\tilde{o} \in \mathbb{R}_F \) is the neutral element with respect to \(\odot \), i.e., \(u \odot \tilde{o} = \tilde{o} \odot u = u, \forall u \in \mathbb{R}_F \).

(ii) With respect to \(\tilde{o} \), none of \(u \in \mathbb{R}_F \), \(u \neq \tilde{o} \) has opposite in \(\mathbb{R}_F \).

(iii) Let \(a, b \in \mathbb{R} \): \(a \cdot b \geq 0 \), and any \(u \in \mathbb{R}_F \), we have \((a + b) \odot u = a \odot u + b \odot u \). For general \(a, b \in \mathbb{R} \), the above property is false.

(iv) For any \(\lambda \in \mathbb{R} \) and any \(u, v \in \mathbb{R}_F \), we have \(\lambda \odot (u \oplus v) = \lambda \odot u \oplus \lambda \odot v \).

(v) For any \(\lambda, \mu \in \mathbb{R} \) and \(u \in \mathbb{R}_F \), we have \(\lambda \odot (\mu \odot u) = (\lambda \cdot \mu) \odot u \).

(vi) If we denote \(\|u\|_F := D(u, \tilde{o}), \forall u \in \mathbb{R}_F \), then \(\| \cdot \|_F \) has the properties of a usual norm on \(\mathbb{R}_F \), i.e.,

\[
\|u\|_F = 0 \text{ iff } u = \tilde{o}, \|\lambda \odot u\|_F = |\lambda| \cdot \|u\|_F,
\]

\[
\|u \oplus v\|_F \leq \|u\|_F + \|v\|_F, \|u\|_F - \|v\|_F \leq D(u, v).
\]

Notice that \((\mathbb{R}_F, \odot, \odot)\) is not a linear space over \(\mathbb{R} \), and consequently \((\mathbb{R}_F, \| \cdot \|_F)\) is not a normed space. Here \(\sum^* \) denotes the fuzzy summation.

We use the following
Definition 2. Let \(U \subseteq (M,d) \) a metric space and let \(f: U \to \mathbb{R}_F \). We define the (first) fuzzy modulus of continuity of \(f \) by

\[
\omega^{(F)}_1(f; \delta) := \sup_{x,y \in U} \frac{D(f(x), f(y))}{d(x,y)}
\]

for \(0 < \delta \leq \text{diameter}(U) \). If \(\delta > \text{diam}(U) \) then we define

\[
\omega^{(F)}_1(f; \delta) := \omega^{(F)}(f; \text{diam}(U)).
\]

Proposition 1. (see Anastassiou [5]) Let \(U \subseteq (M,d) \) metric space and \(f: U \to \mathbb{R}_F \). Assume that

\[
\omega^{(F)}_1(f, \delta), \quad \omega_1(f^{-}, \delta), \quad \omega_1(f^{+}, \delta)
\]

are finite for any \(\delta > 0 \). Here \(\omega_1 \) is the usual real modulus of continuity, i.e. for \(g: U \to \mathbb{R} \) we define

\[
\omega_1(g; \delta) := \sup_{x,y \in U} \frac{|g(x) - g(y)|}{d(x,y)}
\]

etc. Then:

\[
\omega^{(F)}_1(f; \delta) = \sup_{r \in [0,1]} \max \{ \omega_1(f^{-}, \delta), \omega_1(f^{+}, \delta) \}.
\]

We need

Definition 3. Let \(U \) open or compact \(\subseteq (M,d) \) metric space and \(f: U \to \mathbb{R}_F \). We say that \(f \) is fuzzy continuous at \(x_0 \in U \) iff whenever \(x_n \to x_0 \), then \(D(f(x_n), f(x_0)) \to 0 \). If \(f \) is continuous for every \(x_0 \in U \), we then call \(f \) a fuzzy continuous real number valued function. We denote the related space by \(C_F(U) \). Similarly one defines \(C_F([a, b]), [a, b] \subseteq \mathbb{R} \), etc.

Definition 4. Let \(f: K \to \mathbb{R}_F, K \) open or compact \(\subseteq (M,d) \) metric space. We call \(f \) a fuzzy uniformly continuous real number valued function, iff \(\forall \varepsilon > 0, \exists \delta > 0 \) whenever \(d(x,y) \leq \delta, x, y \in K \), implies that \(D(f(x), f(y)) \leq \varepsilon \). We denote the related space by \(C^U_F(K) \).

Definition 5. Let \(f: U \to \mathbb{R}_F, U \subseteq (M,d) \) metric space. If \(D(f(x), \delta) \leq M, \forall x \in U, M \geq 0 \), we call \(f \) a fuzzy bounded real number valued function.

In particular if \(f \in C_F([a, b]), [a, b] \subseteq \mathbb{R} \), then \(f \) is a fuzzy bounded function, also \(\omega_1^{(F)}(f; \delta) < \infty \) for any \(0 < \delta \leq b - a \), etc. Also notice that \(C^U_F(K) = C_F(K) \), for \(K \) compact \(\subseteq (V, \| \cdot \|) \) real normed vector space.

We use

Proposition 2. (see Anastassiou [5]) Let \(K \subseteq (V, \| \cdot \|) \) a real normed vector space and

\[
\omega^{(F)}_1(f; \delta) = \sup_{x,y \in K} \frac{D(f(x), f(y))}{\|x-y\|}.
\]
the fuzzy modulus of continuity for \(f: K \to \mathbb{R}_F \). Then:

1. If \(f \in C^1_F(K) \), \(K \) open convex or compact convex \(\subseteq (V, \| \cdot \|) \), then
 \[
 \omega_1^F(f; \delta) < \infty, \quad \forall \delta > 0.
 \]

2. Assume that \(K \) is open convex or compact convex \(\subseteq (V, \| \cdot \|) \), then
 \[
 \omega_1^F(f; \delta) \text{ is continuous on } \mathbb{R}_+ \text{ in } \delta \text{ for } f \in C^1_F(K).
 \]

3. Assume that \(K \) is convex, then
 \[
 \omega_1^F(f, t_1 + t_2) \leq \omega_1^F(f, t_1) + \omega_1^F(f, t_2), \quad t_1, t_2 \geq 0,
 \]
 that is the subadditivity property is true. Also it holds
 \[
 \omega_1^F(f, n\delta) \leq n\omega_1^F(f, \delta),
 \]
 \[
 \omega_1^F(f, \lambda \delta) \leq \lceil \lambda \rceil \omega_1^F(f, \delta) \leq (\lambda + 1)\omega_1^F(f, \delta),
 \]
 where \(n \in \mathbb{N}, \lambda > 0, \delta > 0, \lceil \cdot \rceil \) is the ceiling of the number.

4. Clearly in general \(\omega_1^F(f; \delta) \geq 0 \) and is increasing in \(\delta > 0 \) and
 \[
 \omega_1^F(f; 0) = 0.
 \]

5. Let \(K \) be open or compact \(\subseteq (V, \| \cdot \|) \). Then \(\omega_1^F(f; \delta) \to 0 \) as \(\delta \downarrow 0 \) iff \(f \in C^1_F(K) \).

6. It holds
 \[
 \omega_1^F(f \oplus g; \delta) \leq \omega_1^F(f; \delta) + \omega_1^F(g; \delta),
 \]
 for \(\delta > 0, \) any \(f, g: K \to \mathbb{R}_F, K \subseteq (V, \| \cdot \|) \) is arbitrary.

We also need

Lemma 3. (see Anastassiou [5]) Let \(K \) be a compact subset of the real normed vector space \((V, \| \cdot \|) \) and \(f \in C_F(K) \). Then \(f \) is a fuzzy bounded function.

We use

Proposition 3. (see Anastassiou [5]) Let \(U \) open of compact \(\subseteq (M, d) \) metric space, \(f \in C_F(U) \). Then \(f_{\pm}^{(r)} \) are equicontinuous with respect to \(r \in [0, 1] \) over \(U \), respectively in \(\pm \).

For the reverse we have

Proposition 4. (see Anastassiou [5]) Let \(f_-^{(r)}, f_+^{(r)} \) be equicontinuous with respect to \(r \in [0, 1] \) on \(U \)-open or compact \(\subseteq (M, d) \)-metric space, respectively in \(\pm \), then \(f \in C_F(U) \).

We mention

Definition 6. (see Wu and Gong [17]) Let \(x, y \in \mathbb{R}_F \). If there exists a \(z \in \mathbb{R}_F \), such that \(x = y + z \), then, we call \(z \) the \(H \)-difference of \(x \) and \(y \), denoted by \(z := x - y \).
Definition 7. (see Wu and Gong [17]) Let $T := [x_0, x_0 + \beta] \subset \mathbb{R}$, with $\beta > 0$. A function $f : T \rightarrow \mathbb{R}_F$ is differentiable at $x \in T$, if there exists a $f'(x) \in \mathbb{R}_F$, such that the limits
\[
\lim_{h \to 0^+} \frac{f(x + h) - f(x)}{h}, \quad \lim_{h \to 0^+} \frac{f(x) - f(x - h)}{h},
\]
each exist and are equal to $f'(x)$. We call f' the derivative of f at x. If f is differentiable at any $x \in T$, we call f differentiable and it has derivative over T, the function f'.

Similarly we define higher order fuzzy derivatives. Regarding functions of several variables one can define the same way partial derivatives in the fuzzy sense.

Let Q be a compact convex subset of \mathbb{R}^k, $k > 1$ and $n \in \mathbb{N}$. By $C^n_F(Q)$ we mean all the functions from Q into \mathbb{R}_F that are n-times continuously differentiable in the fuzzy sense.

We use

Theorem 1. (see Kaleva [11]) Let $f : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}_F$ be fuzzy differentiable. Let $t \in [a, b]$, $0 \leq r \leq 1$. Clearly
\[
[f(t)]^r = [(f(t))^{(r)}_-, (f(t))^{(r)}_+] \subseteq \mathbb{R}.
\]
Then $(f(t))^{(r)}_\pm$ are differentiable and
\[
[f'(t)]^r = [((f(t))^{(r)}_-)', ((f(t))^{(r)}_+)'],
\]
i.e.
\[
(f^{(r)}_\pm)' = (f^{(r)}_\pm)', \text{ for any } r \in [0, 1].
\]

We make

Remark 1. 1) Let $f \in C^n_F([a, b])$. Then by Theorem 1 and Proposition 3 we obtain $f^{(r)}_\pm \in C^n([a, b])$ and
\[
[f^{(i)}(t)]^r = [((f(t))^{(r)}_-)^{(i)}_, ((f(t))^{(r)}_+)^{(i)}_+],
\]
for $i = 0, 1, 2, \ldots, n$, and, in particular, we have that
\[
(f^{(i)}_\pm)^{(r)}_\pm = (f^{(r)}_\pm)^{(i)}_\pm,
\]
for any $r \in [0, 1]$.

2) Let $f \in C^n_F(Q)$, denote $f_\alpha := \frac{\partial^n f}{\partial \alpha^n}$, where $\alpha := (\alpha_1, \ldots, \alpha_k)$, $\alpha_i \in \mathbb{Z}^+$, $i = 1, \ldots, k$ and $0 < |\alpha| := \sum_{i=1}^k \alpha_i \leq n$, $n > 1$. Then we get by Theorem 1 that
\[
(f^{(r)}_\pm)_\alpha = (f_\alpha)^{(r)}_\pm,
\]
for any $r \in [0, 1]$ and any $\alpha: |\alpha| \leq n$. Here $f^{(r)}_{\pm} \in C^n(Q)$.

We also make

Remark 2. (see Anastassiou [3], Remark 3) Let $r \in [0, 1]$, $x_i^{(r)}, y_i^{(r)} \in \mathbb{R}$, $i = 1, \ldots, m \in \mathbb{N}$. Assume

$$\sup_{r \in [0, 1]} \max(x_i^{(r)}, y_i^{(r)}) \in \mathbb{R}, \quad i = 1, \ldots, m.$$

Then

$$\sup_{r \in [0, 1]} \max \left(\sum_{i=1}^{m} x_i^{(r)}, \sum_{i=1}^{m} y_i^{(r)} \right) \leq \sum_{i=1}^{m} \sup_{r \in [0, 1]} \max(x_i^{(r)}, y_i^{(r)}). \quad (7)$$

We use

Lemma 4. Let $r \in [0, 1]$, $\alpha \in I$, I a finite index set, and $x_{\alpha}^{(r)}, y_{\alpha}^{(r)} \in \mathbb{R}$. Assume

$$A := \max_{\alpha \in I} \sup_{r \in [0, 1]} \max(x_{\alpha}^{(r)}, y_{\alpha}^{(r)}) \in \mathbb{R},$$

and

$$B := \sup_{r \in [0, 1]} \max \left\{ \max_{\alpha \in I} x_{\alpha}^{(r)}, \max_{\alpha \in I} y_{\alpha}^{(r)} \right\} \in \mathbb{R}. \quad (8)$$

It holds

$$A = B. \quad (9)$$

Proof. 1) First we prove $B \leq A$. We see that

$$x_{\alpha}^{(r)}, y_{\alpha}^{(r)} \leq A, \quad \forall r \in [0, 1] \text{ and } \forall \alpha \in I.$$

Then

$$A_1 := \max_{\alpha \in I} x_{\alpha}^{(r)} \leq A, \quad A_2 := \max_{\alpha \in I} y_{\alpha}^{(r)} \leq A$$

and

$$\max(A_1, A_2) \leq A.$$

Thus

$$\sup_{r \in [0, 1]} \max(A_1, A_2) \leq A.$$

2) We last prove $A \leq B$. We notice

$$x_{\alpha}^{(r)} \leq \max_{\alpha \in I} x_{\alpha}^{(r)}, \quad \forall r \in [0, 1], \quad \forall \alpha \in I$$

and

$$y_{\alpha}^{(r)} \leq \max_{\alpha \in I} y_{\alpha}^{(r)}, \quad \forall r \in [0, 1], \quad \forall \alpha \in I.$$

Then

$$\max\{x_{\alpha}^{(r)}, y_{\alpha}^{(r)}\} \leq \max \left\{ \max_{\alpha \in I} x_{\alpha}^{(r)}, \max_{\alpha \in I} y_{\alpha}^{(r)} \right\}, \quad \forall r \in [0, 1], \quad \forall \alpha \in I.$$
Furthermore
\[
\sup_{r \in [0,1]} \max\{x^{(r)}_\alpha, y^{(r)}_\alpha\} \leq \sup_{r \in [0,1]} \max_{\alpha \in I}\left\{\max_{\alpha \in I} x^{(r)}_\alpha, \max_{\alpha \in I} y^{(r)}_\alpha\right\} = B, \quad \forall \alpha \in I,
\]
and finally
\[
\max_{\alpha \in I} \sup_{r \in [0,1]} \max\{x^{(r)}_\alpha, y^{(r)}_\alpha\} \leq B.
\]

We mention

Definition 8. Let \(L: C_F(U) \hookrightarrow C_F(U) \), where \(U \) is open or compact \(\subseteq (M, d) \) metric space, such that
\[
L(cf + cg) = c_1 L(f) + c_2 L(g), \quad \forall c_1, c_2 \in \mathbb{R}.
\]

We call \(L \) a fuzzy linear operator.

We give the following example of a fuzzy linear operator, etc.

Definition 9. Let \(f: [0, 1] \to \mathbb{R}_F \) be a fuzzy real function. The fuzzy algebraic polynomial defined by
\[
B^{(F)}_N(f)(x) = \sum_{k=0}^{N} \binom{N}{k} x^k (1-x)^{N-k} \odot f \left(\frac{k}{N} \right), \quad \forall x \in [0, 1], \quad N \in \mathbb{N},
\]
will be called the fuzzy Bernstein operator.

We do have

Theorem 2. (see p. 642, Gal [9]) If \(f \in C_F([0, 1]) \), then
\[
D(B^{(F)}_N(f)(x), f(x)) \leq \frac{3}{2} \omega^{(F)}_1 \left(f; \frac{1}{\sqrt{N}} \right), \quad N \in \mathbb{N}, \quad \forall x \in [0, 1],
\]
i.e.,
\[
\lim_{N \to +\infty} D^*(B^{(F)}_N(f), f) = 0,
\]
that is \(B^{(F)}_N f \to_{n \to +\infty} f \), fuzzy uniform convergence.

We also need

Definition 10. Let \(f, g: U \to \mathbb{R}_F \), \(U \subseteq (M, d) \) metric space. We denote \(f \succcurlyeq g \), if \(f(x) \succcurlyeq g(x), \forall x \in U \), iff \(f^{(r)}_+(x) \geq g^{(r)}_+(x) \) and \(f^{(r)}_-(x) \geq g^{(r)}_-(x) \), \(\forall x \in U, \forall r \in [0, 1] \), iff \(f^{(r)}_+ \geq g^{(r)}_+ \) and \(f^{(r)}_- \geq g^{(r)}_- \), \(\forall r \in [0, 1] \).

We give

Definition 11. Let \(L: C_F(U) \hookrightarrow C_F(U) \) be a fuzzy linear operator, \(U \) open or compact \(\subseteq (M, d) \) metric space. We say that \(L \) is positive, iff whenever \(f, g \in C_F(U) \) are such that \(f \succeq g \) then \(L(f) \succeq L(g) \), iff
\[
(L(f))^{(r)}_+ \geq (L(g))^{(r)}_+ \quad \forall r \in [0, 1].
\]
Fuzzy Korovkin Theory

and

\[(L(f))^{(r)} \geq (L(g))^{(r)}, \quad \forall r \in [0, 1].\] (15)

Here we denote

\[[L(f)]^{r} = [(L(f))^{(r)}, (L(f))^{(r)}], \quad \forall r \in [0, 1].\] (16)

An example of a fuzzy positive linear operator is the fuzzy Bernstein operator on the domain \([0, 1]\), etc.

We will use this type of supposition.

Assumption 1. Let \(L\) be a fuzzy positive linear operator from \(C_{F}(K)\), \(K\) compact \(\subseteq (M, d)\) metric space, into itself. Here we assume that there exists a positive linear operator \(\tilde{L}\) from \(C(K)\) into itself with the property

\[(Lf)^{(r)} = \tilde{L}(f^{(r)}), \quad \forall r \in [0, 1].\] (17)

respectively, for all \(r \in [0, 1]\), \(\forall f \in C_{F}(K)\).

As an example again we mention the fuzzy Bernstein operator and the real Bernstein operator fulfilling the above assumption on \([0, 1]\), etc.

We will use

Theorem A. Let \((X, O)\) be a linearly ordered vector space, \((O\) denotes the order\) and \(G\) a majorant subspace of \(X\) (i.e. for any \(x\) in \(X\) there exist \(z\) and \(y\) in \(G\) such that \(zO \times Oy\)). If \(f: G \rightarrow \mathbb{R}\) is a positive linear map, then there exists (a not necessarily unique) \(F: X \rightarrow \mathbb{R}\) positive linear map, such that \(F(x) = f(x), \forall x \in G\).

Above Theorem A is a special case of the famous Kantorovich Extension Theorem, due to Kantorovich [12]. For a proof see Aliprantis and Burkinshaw [1], Theorem 2.8, p. 26. See also Cristescu [8], p. 72, Proposition 1.

We need

Lemma 5. Let \(\tilde{L}: C^{n}(Q) \rightarrow C(Q)\) be a positive linear operator, \(n \in \mathbb{N}\), \(Q\) compact \(\subseteq \mathbb{R}^{k}\), \(k \geq 1\). Then there exists a unique finite Borel measure \(\mu_{x}\), \(x \in Q\), such that

\[(\tilde{L}(f))(x) = \int_{Q} f(t)d\mu_{x}(t), \quad \forall f \in C^{n}(Q).\]

Notice \((\tilde{L}(1))(x) = \mu_{x}(Q) < \infty\).

Proof. Clearly \((\tilde{L}(\cdot))(x)\) is a positive linear functional on \(C^{n}(Q)\). Also since \(1 \in C^{n}(Q)\), \(C^{n}(Q)\) is a majorant subspace of \(C(Q)\). Thus, by Theorem A there exists a positive linear functional \(M: C(Q) \rightarrow \mathbb{R}\) extending \(\tilde{L}\), i.e.
\[\mathring{L} = M|_{C^n(Q)}. \]

Consequently, by Riesz Representation Theorem there exists a unique finite Borel measure \(\mu_x \) for this \(M \), such that

\[M(f) = \int_Q f(t)d\mu_x(t), \quad \forall f \in C(Q). \]

Therefore

\[\mathring{L}(f)(x) = \int_Q f(t)d\mu_x(t), \quad \forall f \in C^n(Q). \]

We prove uniqueness \(\mu_x \) regarding \(\mathring{L} \cdot (\cdot)(x) \). Let us assume that there exists another finite Borel measure \(\nu \) such that

\[\int_Q f(t)d\mu_x(t) = \int_Q f(t)d\nu(t), \quad \forall f \in C^n(Q). \]

In particular, we have

\[\int_Q p(t)d\mu_x(t) = \int_Q p(t)d\nu(t), \]

for all polynomials \(p \). Since by the Stone–Weierstrass Approximation Theorem the polynomials are uniformly dense in \(C(Q) \), it follows for any \(f \in C(Q) \) that there exists a sequence \(\{p_n\}_{n \in \mathbb{N}} \) of polynomials that converges uniformly to \(f \) on \(Q \). In particular \(\{p_n\} \) is uniformly bounded. Now from

\[\int_Q p_n(t)d\mu_x(t) = \int_Q p_n(t)d\nu(t) \]

and the Lebesgue Dominated Convergence Theorem, by taking the limits in the last equation, we find

\[\int_Q f(t)d\mu_x(t) = \int_Q f(t)d\nu(t). \]

Hence, by the uniqueness of the measure in the Riesz Representation Theorem, we get indeed that \(\mu_x = \nu \).

We give

Remark 3. We recall from Anastassiou [2], p. 210–211 the function

\[\phi_n(x) := \int_0^{\lfloor x \rfloor} \frac{t}{n-1} (\lfloor x \rfloor - t)^{n-1} \frac{dt}{(n-1)!}, \quad (18) \]

\(x \in \mathbb{R}, \ n \in \mathbb{N} \), where \(\lfloor \cdot \rfloor \) is the ceiling of the number.

We have

\[\phi_n(x) = \int_0^{\lfloor x \rfloor} \int_0^{x_1} \cdots \left(\int_0^{x_{n-1}} \frac{x_n}{h} \ dx_n \right) \cdots dx_1, \quad (19) \]
Fuzzy Korovkin Theory

\[\phi_n(x) = \frac{1}{n!} \left(\sum_{j=0}^{\infty} (|x| - jh)^n \right), \quad x \in \mathbb{R}. \] \hspace{1cm} (20)

Also it holds

\[\phi_n(x) \leq \left(\frac{|x|^{n+1}}{(n+1)!h} + \frac{|x|^n}{2n!} + \frac{h|x|^{n-1}}{8(n-1)!} \right), \] \hspace{1cm} (21)

and

\[\phi_n(x) = \int_0^x \phi_{n-1}(t)dt, \quad x \in \mathbb{R}^+, \quad n \in \mathbb{N}. \] \hspace{1cm} (22)

And from Anastassiou [2], p. 217 we have

\[\phi_n(x) \leq \frac{|x|^n}{n!} \left(1 + \frac{|x|}{(n+1)h} \right), \quad x \in \mathbb{R}, \quad n \in \mathbb{N}. \] \hspace{1cm} (23)

3. UNIVARIATE RESULTS

We need to mention

Theorem 3. (by Corollary 7.2.2, p. 219–220 in Anastassiou [2] and Geometric Moment Theory, Kemperman [13]) Consider the positive linear operator

\[\tilde{L}: C([a, b]) \rightarrow C([a, b]). \] \hspace{1cm} (24)

Let

\[
\begin{align*}
c_k(x) &:= \tilde{L}((t-x)^k, x), \quad k = 0, 1, \ldots, n, \quad n \in \mathbb{N}; \\
d_n(x) &:= [\tilde{L}((t-x)^n, x)]^{1/n}; \\
c(x) &:= \max(x-a, b-x) \quad (c(x) \geq (b-a)/2).
\end{align*}
\] \hspace{1cm} (25)

Let \(g \in C^n([a, b]) \) such that \(\omega_1(g^n, h) \leq w \), where \(w, h > 0, 0 < h \leq b-a \). Then

\[
|\tilde{L}(g, x) - g(x)| \leq |g(x)| |c_0(x) - 1| + \sum_{k=1}^{n} \frac{|g^{(k)}(x)|}{k!} |c_k(x)|
\]

\[
+ w\phi_n(c(x)) \left(\frac{d_n(x)}{c(x)} \right)^n, \quad \forall x \in [a, b].
\] \hspace{1cm} (26)

Inequality (26) is sharp. It is attained in a certain sense by \(w\phi_n((t-x)_+) \) and a measure \(\tilde{\mu}_x \) supported by \(\{x, b\} \) when \(x - a \leq b - x \), also attained by \(w\phi_n((x-t)_+) \) and a measure \(\tilde{\mu}_x \) supported by \(\{x, a\} \) when \(x - a \geq b - x \):
in each case with masses \(c_0(x) - \left(\frac{d_n(x)}{c(x)} \right)^n \) and \(\frac{d_n(x)}{c(x)} \right)^n \), respectively.
Note 1. Assuming $\omega_1(g^{(n)}, h) > 0$ for $h > 0$ and all as in the context of Theorem 3. We prefer to write

$$|\tilde{L}(g, x) - g(x)| \leq |g(x)| |c_0(x) - 1| + \sum_{k=1}^{n} \frac{|g^{(k)}(x)|}{k!} |c_k(x)|$$

$$+ \phi_n(c(x)) \left(\frac{d_n(x)}{c(x)} \right)^n \omega_1(g^{(n)}, h), \quad \forall x \in [a, b]. \quad (27)$$

We need also

Theorem 4. (By Theorem 7.3.5, p. 231–232 in Anastassiou [2] and Lemma 5) Consider the positive linear operator

$$\tilde{L}: C^m([a, b]) \to C([a, b]), \quad n \in \mathbb{N}.$$ Assume that

$$\tilde{L}(1, x) > 0,$$

and

$$\tilde{L}(|t-x|^{n+1}, x) > 0, \quad x \in [a, b], \quad (28)$$

Consider also $\rho > 0$. Consider $g \in C^m([a, b]), n \geq 1$, with $\omega_1(g^{(n)}, \delta) > 0$ for any $\delta > 0$. Then

$$|\tilde{L}(g, x) - g(x)| \leq |g(x)| |\tilde{L}(1, x) - 1| + \sum_{k=1}^{n} \frac{|g^{(k)}(x)|}{k!} |\tilde{L}((t-x)^k, x)|$$

$$+ \left[\frac{n\rho^2}{8} + \frac{\rho}{2} + \frac{1}{n+1} \right] \frac{\left(\tilde{L}(1, x) \right)^{1/(n+1)}}{\rho n!} \left(\tilde{L}(|t-x|^{n+1}, x) \right)^{n/(n+1)}$$

$$\times \omega_1\left(g^{(m)}, \rho \left(\frac{\tilde{L}(|t-x|^{n+1}, x)}{\tilde{L}(1, x)} \right)^{1/(n+1)} \right), \quad x \in [a, b], \quad n \in \mathbb{N}. \quad (29)$$

We will use also

Theorem 5. (by Theorem 7.2.2, p. 216–217, in Anastassiou [2] and Lemma 5) Consider the positive linear operator

$$\tilde{L}: C^m([a, b]) \to C([a, b]), \quad n \in \mathbb{N}.$$ Assume that

$$\tilde{L}(1, x) > 0,$$

and

$$\tilde{L}(|t-x|^{n+1}, x) > 0, \quad x \in [a, b].$$

Consider $g \in C^m([a, b]), n \geq 1$, with $\omega_1(g^{(n)}, \delta) > 0$ for any $\delta > 0$. Then

$$|\tilde{L}(g, x) - g(x)| \leq |g(x)| |\tilde{L}(1, x) - 1| + \sum_{k=1}^{n} \frac{|g^{(k)}(x)|}{k!} |\tilde{L}((t-x)^k, x)|$$
Theorem 6. Consider the fuzzy positive linear operator $L: C^\sharp([a,b]) \to C_F([a,b]), \ n \in \mathbb{N}$.

\[\parallel f \parallel_{\infty} \leq \frac{\left(\parallel \tilde{L}(t-x|^{n+1}, x) \parallel_{\infty} \right)^n}{n!} \left(\left(\tilde{L}(1)(x) \right)^{\frac{1}{n+1}} \right)^n \]

\[+ \frac{1}{(n+1)} \omega_1(g^{(n)}, (\tilde{L}(t-x|^{n+1}, x))^n_{\frac{1}{n+1}}), \ x \in [a,b], \ n \in \mathbb{N}. \] (31)

Remark 4. 1) If $\parallel \tilde{L}(1) \parallel_{\infty} = 0$, then $\tilde{L} = 0$ the trivial operator, therefore without loss of generality we may assume $\tilde{L} \neq 0$, and as a result we have $\parallel \tilde{L}(1) \parallel_{\infty} > 0$.

2) By using Hölder’s inequality and Riesz Representation Theorem, for \tilde{L} as in (24), we easily derive that

\[|\tilde{L}((t-x)^k, x)| \leq (\tilde{L}(1, x))^{1-\frac{k}{n}} (\tilde{L}(|t-x|^n, x))^{\frac{k}{n}}, \] (32)

under the assumption $\tilde{L}(1, x) > 0, 0 < k \leq n$. And it holds

\[\parallel \tilde{L}((t-x)^k, x) \parallel_{\infty} \leq \parallel \tilde{L}(1) \parallel_{\infty}^{1-\frac{k}{n}} \parallel \tilde{L}(|t-x|^n, x) \parallel_{\infty}^{\frac{k}{n}}, \ 0 < k \leq n, \tilde{L} \neq 0. \] (33)

Similarly, by Lemma 5, for $\tilde{L}: C^n([a,b]) \to C([a,b])$ positive linear operator, it holds

\[|\tilde{L}((t-x)^k, x)| \leq (\tilde{L}(1, x))^{1-\frac{k}{n+1}} (\tilde{L}(|t-x|^{n+1}, x))^{\frac{k}{n+1}}, \]

\[0 < k < n + 1. \] (34)

And also it holds

\[\parallel \tilde{L}((t-x)^k, x) \parallel_{\infty} \leq \parallel \tilde{L}(1) \parallel_{\infty}^{1-\frac{k}{n+1}} \parallel \tilde{L}(|t-x|^{n+1}, x) \parallel_{\infty}^{\frac{k}{n+1}}, \]

\[0 < k < n + 1. \] (35)

3) If $\tilde{L}(1, x) = 0, x \in [a,b]$, then easily we get that $\tilde{L}(g, x) = 0, \forall g \in C^n([a,b])$. So that inequalities (26), (27) and (31) hold trivially.

4) If $d_n(x) = 0, x \in [a,b]$, then we get that $c_k(x) = 0, k = 0, 1, \ldots, n$, since the associated measure μ_x is concentrated at $\{x\}$ only, etc., and inequalities (26) and (27) hold again, in fact as equalities.

5) Similarly, if $\tilde{L}(|t-x|^{n+1}, x) = 0, x \in [a,b]$, then we get again $\tilde{L}((t-x)^k, x) = 0, k = 1, \ldots, n$, since the associated measure μ_x is concentrated at $\{x\}$ only, etc., and inequalities (29) and (31) hold again, in fact as equalities.

6) If $\omega_1(g^{(n)}, h) = 0$ for some $h > 0$ then $g^{(n)}$ is the constant function, furthermore inequalities (26), (27), (29) and (31) are again valid.

We give our first main fuzzy result.

Theorem 6. Consider the fuzzy positive linear operator

\[L: C^\sharp([a,b]) \to C_F([a,b]), \ n \in \mathbb{N}, \] (36)
with the property
\[
(Lf)^{(r)}_\pm = \tilde{L}(f^{(r)}_\pm),
\]
respectively, for all \(r \in [0,1], \forall f \in C^n_\pm([a,b]). \) Here \(\tilde{L} \) is a positive linear operator such that
\[
\tilde{L} : C([a,b]) \to C([a,b]).
\] Let
\[
c_k(x) := \tilde{L}((t-x)^k, x), \quad k = 0, 1, \ldots, n;
\]
\[
d_n(x) := (\tilde{L}(|t-x|^n, x))^{1/n};
\]
\[
c(x) := \max(x-a, b-x).
\] Let \(f \in C^n_\pm([a,b]) \) such that \(\omega_1^{(\mathcal{F})}(f^{(n)}, h) > 0 \) for any \(h > 0. \) Then
\[
1)
\]
\[
D((Lf)(x), f(x)) \leq |c_0(x) - 1|D(f(x), \tilde{o}) + \sum_{k=1}^{n} \frac{|c_k(x)|}{k!} D(f^{(k)}(x), \tilde{o})
\]
\[
+ \phi_n(c(x)) \left(\frac{d_n(x)}{c(x)} \right)^n \omega_1^{(\mathcal{F})}(f^{(n)}, h), \quad x \in [a,b],
\]
and
\[
2)
\]
\[
D^*(Lf, f) \leq \|\tilde{L}1 - 1\|_\infty D^*(f, \tilde{o}) + \sum_{k=1}^{n} \frac{\|\tilde{L}((t-x)^k, x)\|_\infty}{k!} D^*(f^{(k)}, \tilde{o})
\]
\[
+ \|\phi_n(c(x))\|_\infty \left\| \frac{\tilde{L}(|t-x|^n, x)}{c(x)} \right\|_\infty \omega_1^{(\mathcal{F})}(f^{(n)}, h).
\]

Proof. We have the following
\[
D((Lf)(x), f(x)) = \sup_{r \in [0,1]} \max \left\{ |(Lf)^{(r)}_-(x) - f^{(r)}_-(x)|, |(Lf)^{(r)}_+(x) - f^{(r)}_+(x)| \right\}
\]
\[
= \sup_{r \in [0,1]} \max \left\{ |(\tilde{L}(f^{(r)}))_-(x) - f^{(r)}_-(x)|, |(\tilde{L}(f^{(r)}))_+(x) - f^{(r)}_+(x)| \right\}
\]
(by Remark 1 (1) and (27))
\[
\leq \sup_{r \in [0,1]} \left\{ |f^{(r)}_-(x)| |c_0(x) - 1| + \sum_{k=1}^{n} \frac{|(f^{(k)}_-(x)|}{k!} |c_k(x)|
\]
\[
+ \phi_n(c(x)) \left(\frac{d_n(x)}{c(x)} \right)^n \omega_1((f^{(n)}_-(x), |f^{(r)}_+(x)| |c_0(x) - 1|
\]
Theorem 7. Consider the fuzzy positive linear operator

\[\tilde{L} : C^\ast_\mu([a, b]) \to C_\mu([a, b]), \quad n \in \mathbb{N}, \]

with the property

\[(L_f)^{(r)} = \tilde{L}(f^{(r)}), \]

respectively, for all \(r \in [0, 1], \forall f \in C^n_\mu([a, b]). \) Here \(\tilde{L} \) is a positive linear operator from \(C^n_\mu([a, b]) \) into \(C([a, b]). \) Additionally assume that \(\tilde{L}(1, x) > 0, \)
\(x \in [a, b] \) and consider \(\rho > 0. \) Let \(f \in C^\ast_\mu([a, b]) \) such that \(\omega_1^{(F)}(f^{(n)}, h) > 0 \)
for any \(h > 0. \) Then:

1) \(D((Lf)(x), f(x)) \leq |\tilde{L}(1, x) - 1|D(f(x), \bar{o}) \)
\[+ \sum_{k=1}^{n} \frac{|(f^{(k)})^{(r)}(x)|c_k(x)| + \phi_n(c(x))\left(\frac{d_n(x)}{c(x)}\right)^n \omega_1((f^{(n)})^{(r)}, h)}{k!} \]
\[\leq |c_0(x) - 1| \sup_{r \in [0, 1]} \max\{|f_+^{(r)}(x)|, |f_-^{(r)}(x)|\} \]
\[+ \sum_{k=1}^{n} \frac{|c_k(x)|}{k!} \sup_{r \in [0, 1]} \max\{|(f^{(k)})_-^{(r)}(x)|, |(f^{(k)})_+^{(r)}(x)|\} \]
\[+ \phi_n(c(x))\left(\frac{d_n(x)}{c(x)}\right)^n \sup_{r \in [0, 1]} \max\{\omega_1((f^{(n)})_-^{(r)}(x), h), \omega_1((f^{(n)})_+^{(r)}(x), h)\} \]
(by Proposition 1)
\[= |c_0(x) - 1|D(f(x), \bar{o}) \]
\[+ \sum_{k=1}^{n} \frac{|c_k(x)|}{k!} \tilde{L}(f^{(k)}(x), \bar{o}) + \phi_n(c(x))\left(\frac{d_n(x)}{c(x)}\right)^n \omega_1^{(F)}(f^{(n)}, h). \]

That proves (40). \(\square \)

We proceed with our next main result.

Theorem 7. Consider the fuzzy positive linear operator

\[L : C^\ast_\mu([a, b]) \to C_\mu([a, b]), \quad n \in \mathbb{N}, \]

with the property

\[(L_f)^{(r)} = \tilde{L}(f^{(r)}), \]

respectively, for all \(r \in [0, 1], \forall f \in C^n_\mu([a, b]). \) Here \(L \) is a positive linear operator from \(C^n_\mu([a, b]) \) into \(C([a, b]). \) Additionally assume that \(L(1, x) > 0, \)
\(x \in [a, b] \) and consider \(\rho > 0. \) Let \(f \in C^\ast_\mu([a, b]) \) such that \(\omega_1^{(F)}(f^{(n)}, h) > 0 \)
for any \(h > 0. \) Then:

1) \(D((Lf)(x), f(x)) \leq |\tilde{L}(1, x) - 1|D(f(x), \bar{o}) \)
\[+ \sum_{k=1}^{n} \frac{|\tilde{L}((t-x)^k, x)|}{k!}D(f^{(k)}(x), \bar{o}) + \left[\frac{n\rho^2}{8} + \frac{\rho}{2} + \frac{1}{(n+1)} \right] \]
\[\times \frac{(\tilde{L}(1, x))^{(n+1)}}{\rho n!} \left(\frac{\tilde{L}(|t-x|^{n+1}, x)}{\rho} \right)^{\frac{n}{(n+1)}} \]
\[\times \omega_1^{(F)}\left(f^{(n)}, \rho \left(\frac{\tilde{L}(|t-x|^{n+1}, x)}{\tilde{L}(1, x)} \right)^{\frac{1}{(n+1)}} \right), \quad n \in \mathbb{N}, \ x \in [a, b]. \quad (42) \]

2) And by assuming \(\tilde{L}(1, x) > 0, \forall x \in [a, b], \) it holds
\[D^*(Lf, f) \leq \|\tilde{L}1 - 1\|_\infty D^*(f, \tilde{o}) + \sum_{k=1}^{n} \frac{\| \tilde{L}(t - x)^k \|_\infty}{k!} D^*(f^{(k)}, \tilde{o}) + \left[\frac{n \rho^2}{8} + \frac{\rho}{2} + \frac{1}{(n+1)} \right] \frac{\|\tilde{L}(1,x)\|^{1/(n+1)}}{\rho n!} \frac{\|\tilde{L}(|t-x|^{n+1}, x)\|^{1/(n+1)}}{\|\tilde{L}(1,x)\|_\infty} \times \omega^{(F)}(f^{(n)}, \rho, \|\tilde{L}(|t-x|^{n+1}, x)\|^{1/(n+1)}) \]. (43)

Proof. Here we are using (29), see also Remark 4(5). The proof is similar to the proof of Theorem 6 and is omitted. \(\square\)

We present

Theorem 8. Consider the fuzzy positive linear operator

\[L: C^n_F([a, b]) \to C_F([a, b]), \quad n \in \mathbb{N}, \] (44)

with the property

\[(Lf)^{(r)}_{\pm} = \tilde{L}(f^{(r)}_{\pm}), \] (45)

respectively, for all \(r \in [0, 1], \forall f \in C^n_F([a, b]). \) Here \(\tilde{L} \) is a positive linear operator such that

\[\tilde{L}: C^n([a, b]) \to C([a, b]). \] (46)

Let \(f \in C^n_F([a, b]) \) such that \(\omega^{(F)}_1(f^{(n)}, h) > 0 \) for any \(h > 0. \) Then:

1) \[D((Lf)(x), f(x)) \leq |\tilde{L}(1,x) - 1| D(f(x), \tilde{o}) + \sum_{k=1}^{n} \frac{|\tilde{L}((t-x)^k)(x)|}{k!} D(f^{(k)}(x), \tilde{o}) \]
\[+ \frac{(\tilde{L}(|t-x|^{n+1})(x))^{1/(n+1)}}{n!} \left((\tilde{L}(1,x))^{1/(n+1)} + \frac{1}{(n+1)} \right) \times \omega^{(F)}_1(f^{(n)}, (\tilde{L}(|t-x|^{n+1})(x))^{1/(n+1)}), \quad \forall x \in [a, b]. \] (47)

And also it holds

2) \[D^*(Lf, f) \leq \|\tilde{L}1 - 1\|_\infty D^*(f, \tilde{o}) + \sum_{k=1}^{n} \frac{\| \tilde{L}((t - x)^k) \|_\infty}{k!} D^*(f^{(k)}, \tilde{o}) + \left[\frac{n \rho^2}{8} + \frac{\rho}{2} + \frac{1}{(n+1)} \right] \frac{\|\tilde{L}(1,x)\|^{1/(n+1)}}{\rho n!} \frac{\|\tilde{L}(|t-x|^{n+1}, x)\|^{1/(n+1)}}{\|\tilde{L}(1,x)\|_\infty} \times \omega^{(F)}_1(f^{(n)}, \rho, \|\tilde{L}(|t-x|^{n+1}, x)\|^{1/(n+1)}) \]. \]
Proof. Here we use (31) and see also Remark 4 (3) and (5). We do have
\[
D((Lf)(x), f(x)) = \sup_{r \in [0,1]} \max \{ |(Lf)^{r}(x) - f^{(r)}(x)|, |(Lf)^{r}_{+}(x) - f^{(r)}_{+}(x)| \}
\]
\[
= \sup_{r \in [0,1]} \max \{ |\tilde{L}(f^{(r)})(x) - f^{(r)}(x)|, |\tilde{L}(f^{(r)})(x) - f^{(r)}_{+}(x)| \}
\]
\[
\leq \sup_{r \in [0,1]} \max \left\{ \left| f^{(r)}(x) \right| \left| \tilde{L}(1, x) - 1 \right| + \sum_{k=1}^{n} \frac{|(f^{(k)})_{+}^{(r)}(x)|}{k!} |(\tilde{L}((\cdot - x)^{k}))(x)| \right. \\
+ \frac{((\tilde{L}((\cdot - x)^{n+1}))(x))^{n+1}}{n!} \left(\frac{1}{(n+1)!} \right)
\times \omega_{1} \left((f^{(n)})_{+}^{(r)}, ((\tilde{L}((\cdot - x)^{n+1}))(x))^{\frac{1}{n+1}} \right), \left. |\tilde{L}(1, x) - 1| \sup_{r \in [0,1]} \max \{ |f^{(r)}(x)|, |f^{(r)}_{+}(x)| \} \right\}
\]
\[
+ \sum_{k=1}^{n} \frac{|(\tilde{L}((\cdot - x)^{k}))(x)|}{k!} \sup_{r \in [0,1]} \max \{ |(f^{(k)})_{+}^{(r)}(x)|, |(f^{(k)}_{+})^{(r)}(x)| \}
\]
\[
+ \frac{((\tilde{L}((\cdot - x)^{n+1}))(x))^{n+1}}{n!} \left(\frac{1}{(n+1)!} \right)
\times \sup_{r \in [0,1]} \max \left\{ \omega_{1} \left((f^{(n)})_{+}^{(r)}, ((\tilde{L}((\cdot - x)^{n+1}))(x))^{\frac{1}{n+1}} \right), \right. \\
\times \omega_{1} \left((f^{(n)})_{+}^{(r)}, ((\tilde{L}((\cdot - x)^{n+1}))(x))^{\frac{1}{n+1}} \right) \right\}
\]
\[
= |\tilde{L}(1, x) - 1| D(f(x), \tilde{\partial}) + \sum_{k=1}^{n} \frac{|(\tilde{L}((\cdot - x)^{k}))(x)|}{k!} D(f^{(k)}(x), \tilde{\partial})
\]
\[
+ \frac{((\tilde{L}((\cdot - x)^{n+1}))(x))^{n+1}}{n!} \left(\frac{1}{(n+1)!} \right)
\times \omega_{1}^{(F)} \left(f^{(n)}, ((\tilde{L}((\cdot - x)^{n+1}))(x))^{\frac{1}{n+1}} \right). \square
Note 2. If $\omega_1^{(F)}(f^{(n)}, h) = 0$ for some $h > 0$, then by Proposition 1 we get $\omega_1((f^{(n)})_r, h), \omega_1((f^{(n)})_r, h) = 0, \forall r \in [0, 1]$, i.e. $(f^{(r)})_n = (f^{(n)})_r$ are constant real valued functions, $\forall r \in [0, 1]$. Consequently (see Remark 4(6) and repeat the proofs) inequalities (40), (41), (42), (43), (47) and (48) are again valid.

We give the following fuzzy Korovkin type theorem (Korovkin [14]).

Theorem 9. Consider the sequence of fuzzy positive linear operators

$$L_N: C^n_F([a, b]) \rightarrow C_F([a, b]), \quad n \in \mathbb{N}, \forall N \in \mathbb{N},$$

with the property

$$(L_N f)_r^{(r)} = \tilde{L}_N(f_r^{(r)}),$$

respectively, for all $r \in [0, 1], \forall f \in C^n_F([a, b]), \forall N \in \mathbb{N}$. Here $\{\tilde{L}_N\}_{N \in \mathbb{N}}$ is a sequence of positive linear operators such that

$$\tilde{L}_N: C^1([a, b]) \rightarrow C([a, b]).$$

Assume that $\|\tilde{L}_N(1)\|_\infty \leq \gamma, \forall N \in \mathbb{N}$, for some $\gamma > 0$. Furthermore assume that $\tilde{L}_N1 \rightarrow 1$ and $\|(\tilde{L}_N(| \cdot - x|^{n+1}))(x)\|_\infty \rightarrow 0$, as $N \rightarrow \infty$. Then $D^*(L_N f, f) \rightarrow 0$ as $N \rightarrow \infty, \forall f \in C^n_F([a, b])$. I.e. $L_N \rightarrow I$, as $N \rightarrow \infty$, fuzzy and uniformly, where I is the fuzzy unit operator.

Proof. From (48) we get

$$D^*(L_N f, f) \leq \|\tilde{L}_N1 - 1\|_\infty D^*(f, \tilde{d}) + \sum_{k=1}^n \frac{\|L_N((\cdot - x)^k)(x)\|_\infty}{k!} D^*(f^{(k)}, \tilde{d})$$

$$+ \frac{\|L_N((\cdot - x)^{n+1})(x)\|_\infty}{n!} \left(\|L_N(1)\|_\infty^{\frac{1}{n+1}} + \frac{1}{n+1}\right)$$

$$\times \omega_1^{(F)}(f^{(n)}, \|(L_N((\cdot - x)^{n+1}))(x)\|_\infty^{\frac{1}{n+1}}), \forall N \in \mathbb{N}.$$ (51)

Also by (35) we have

$$\|\tilde{L}_N((t - x)^k, x)\|_\infty \leq \|\tilde{L}_N(1)\|_\infty^{1 - \frac{k}{n+1}} \|\tilde{L}_N((t - x)^{n+1}, x)\|_\infty^{\frac{k}{n+1}},$$ (52)

any $0 < k < n + 1, \forall N \in \mathbb{N}$.

Now by using (52), (51) and the assumptions of the theorem we conclude that $D^* (L_N f, f) \rightarrow 0$, as $N \rightarrow \infty$. \square

Note 3. Inequality (51), proof of Theorem 9, gives the convergence of $L_N \rightarrow I$, quantitatively, and at higher rate, reflecting the higher order fuzzy differentiability of f.
4. MULTIDIMENSIONAL RESULTS

We need

Theorem 10. (By Theorem 7.4.1, p. 236 of Anastassiou [2] and Riesz Representation Theorem) Take $Q := \{x \in \mathbb{R}^k : \|x\|_{\ell_1} \leq 1\}$, $k \geq 1$, $x \in Q$. Let $\tilde{L} : C(Q) \to C(Q)$ positive linear operator with $\tilde{L}(1, x) = 1$ and $f \in C^n(Q)$, $n \in \mathbb{N}$. Here $f_\alpha = \frac{\partial^n}{\partial x^\alpha} f$, where $\alpha := (\alpha_1, \ldots, \alpha_k)$, $\alpha_i \in \mathbb{Z}^+$, $i = 1, \ldots, k$, and $0 < |\alpha| := \sum_{i=1}^k \alpha_i \leq n$. Assume for $h > 0$ we have $w := \max_{|\alpha| = n} |\alpha| = 1 \omega_1(f_\alpha, h) > 0$, where ω_1 is the usual modulus of continuity with respect to $\| \cdot \|_{\ell_1}$ relative to Q. Then

$$|\tilde{L}(f, x) - f(x)| \leq \sum_{j=1}^n \left(\sum_{|\alpha| = j} \left(\frac{|f_\alpha(x)|}{\alpha_1! \cdots \alpha_k!} \right) \tilde{L}\left(\left(\prod_{i=1}^k (z_i - x_i)^{\alpha_i} \right), x \right) \right) + (\tilde{L}(\|z - x\|_{\ell_1}, x)) \phi_n(1 + \|x\|_{\ell_1}) w. \quad (53)$$

Proof. We add the following, in order to transfer here Theorem 7.4.1, p. 236 of Anastassiou [2]. Let $g_z(t) := f(x + t(z - x))$, $x, z \in Q$, all $0 \leq t \leq 1$. For $j = 1, \ldots, n$ we have

$$g_z^{(j)}(t) = \left[\sum_{i=1}^k (z_i - x_i) \frac{\partial}{\partial x_i} \right]^j f(x + t(z - x))$$

with

$$g_z^{(j)}(0) = \left[\sum_{i=1}^k (z_i - x_i) \frac{\partial}{\partial x_i} \right]^j f(x), \quad \forall x, z \in Q.$$

More precisely, we get

$$\frac{g_z^{(j)}(0)}{j!} = \sum_{|\alpha|=j} \frac{\prod_{i=1}^k (z_i - x_i)^{\alpha_i}}{\prod_{i=1}^k \alpha_i!} f_\alpha(x). \quad \square \quad (54)$$

We will use

Theorem 11. (By Theorem 7.4.2, p. 237 of Anastassiou [2]) Let μ be a measure of mass $m > 0$ on $Q \subseteq \mathbb{R}^k$, $k \geq 1$ compact and convex. Assume

$$\frac{1}{(n+1)} \left(\frac{1}{m} \int_Q \|x - x_0\|^n_{\ell_1} \mu(dx) \right)^{\frac{1}{(n+1)}} =: h > 0, \quad (55)$$
where \(x_0 \) is a fixed point of \(Q \). Also, let \(f \in C^n(Q) \): \(\max_{|\alpha|=n} \omega_1(f_\alpha, h) \leq w \), where \(w > 0 \). Then

\[
\left| \int_Q f \, d\mu - f(x_0) \right| \leq |m - 1| |f(x_0)| + \sum_{j=1}^{n} \frac{1}{j!} \int_Q g_x^{(j)}(0) \mu(dx) + mwh^n \left[\frac{3(n+1)^n}{2n!} + \frac{(n+1)^{n-1}}{8(n-1)!} \right], \tag{56}
\]

where \(g_x(t) := f(x_0 + t(x - x_0)) \), \(t \geq 0 \). Above inequality (56) is trivially true if \(h = 0 \), or if \(w = 0 \) with \(h > 0 \).

Translating last Theorem 11 into the terminology of positive linear operators and by expanding we have

Theorem 12. Let \(Q \subseteq \mathbb{R}^k \), \(k \geq 1 \) compact and convex. Let \(\tilde{L} \) be a positive linear operator from \(C(Q) \) into \(C(Q) \). Assume \(\tilde{L}(1, x) > 0 \), \(\forall x \in Q \). Consider \(f \in C^n(Q) \), \(n \in \mathbb{N} \). Then:

\[
|\tilde{L}(f)(x) - f(x)| \leq |\tilde{L}(1)(x) - 1| |f(x)| + \sum_{j=1}^{n} \left\{ \sum_{|\alpha|=j} \frac{|f_\alpha(x)|}{k} \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\}
\]

\[
+ (\tilde{L}(1)(x))^{\frac{1}{n+1}} (\tilde{L}(|x - \omega_1|^{n+1})(x))^{\frac{n}{n+1}} \left[\frac{3}{2n!} + \frac{1}{8(n-1)!(n+1)} \right]
\]

\[
\times \max_{|\alpha|=n} \omega_1 \left(f_\alpha, \frac{1}{(n+1)} \left((\tilde{L}(|x - \omega_1|^{n+1})(x))^{\frac{1}{n+1}} \right), \quad \forall x \in Q. \tag{57}\right)
\]

We have

Corollary 1. (to Theorem 12) All as in Theorem 12 with \(\tilde{L}(1, x) = 1 \), \(\forall x \in Q \). Then:

\[
|\tilde{L}(f)(x) - f(x)| \leq \sum_{j=1}^{n} \left\{ \sum_{|\alpha|=j} \frac{|f_\alpha(x)|}{k} \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\}
\]

\[
+ (\tilde{L}(|x - \omega_1|^{n+1})(x))^{\frac{n}{n+1}} \left[\frac{3}{2n!} + \frac{1}{8(n-1)!(n+1)} \right]
\]

\[
\times \max_{|\alpha|=n} \omega_1 \left(f_\alpha, \frac{1}{(n+1)} \left((\tilde{L}(|x - \omega_1|^{n+1})(x))^{\frac{1}{n+1}} \right), \quad \forall x \in Q, \forall f \in C^n(Q). \tag{58}\right)
\]

We further give
Theorem 13. Let Q be a compact and convex subset of \mathbb{R}^k, $k \geq 1$, and let $x_0 := (x_{01}, \ldots, x_{0k}) \in Q$ be fixed and let μ be a measure on Q of mass $m \geq 0$. Consider $f \in C^n(Q)$, $n \in \mathbb{N}$, and suppose that each nth order partial derivative $f_\alpha := \frac{\partial^n f}{\partial x^{\alpha}}$, where $\alpha := (\alpha_1, \ldots, \alpha_k)$, $\alpha_i \in \mathbb{Z}^+$, $i = 1, \ldots, k$ and $|\alpha| := \sum_{i=1}^{n} \alpha_i = n$, has relative to Q and the $\| \cdot \|_{\ell_1}$, a modulus of continuity $\omega_1(f_\alpha, h) \leq w$. Here we take $h := \left(\int_Q \| z - x_0 \|_{\ell_1}^{n+1} d\mu(z) \right)^{1/(n+1)}$. (59)

Then:

$$\left| \int_Q f \, d\mu - f(x_0) \right| \leq |m - 1| |f(x_0)| + \left| \sum_{j=1}^{n} \frac{1}{j!} \int_Q g_\alpha^{(j)}(0) \mu(dx) \right| + \frac{wh^n}{n!} \left(m^{1/(n+1)} + \frac{1}{(n+1)} \right),$$

where $g_\alpha(t) := f(x_0 + t(x - x_0))$, $t \geq 0$, $x \in Q$.

Proof. Here we have

$$f(z_1, \ldots, z_k) = g_z(1) = \sum_{j=0}^{n} \frac{g_\alpha^{(j)}(0)}{j!} + R_\alpha(z, 0),$$

where

$$R_\alpha(z, 0) := \int_0^1 \left(\int_0^{t_1} \cdots \left(\int_0^{t_{n-1}} (g_\alpha^{(n)}(t_n) - g_\alpha^{(n)}(0)) dt_n \right) \cdots dt_1 \right) dt_1,$$

$z \in Q$.

In Anastassiou [2], p. 236 we got that (see 7.4.4 there)

$$|R_\alpha(z, 0)| \leq w\phi_n(\| z - x_0 \|_{\ell_1}), \forall z \in Q.$$

But by (23) we have

$$w\phi_n(\| z - x_0 \|_{\ell_1}) \leq w \frac{\| z - x_0 \|_{\ell_1}^n}{n!} \left(1 + \frac{\| z - x_0 \|_{\ell_1}}{(n+1)h} \right) = \frac{w}{n!} \left(\| z - x_0 \|_{\ell_1}^n + \frac{\| z - x_0 \|_{\ell_1}^{n+1}}{(n+1)h} \right).$$

Hence

$$\int_Q |R_\alpha(z, 0)| \, d\mu(z) \leq w \int_Q \phi_n(\| z - x_0 \|_{\ell_1}) d\mu(z)$$

$$\leq \frac{w}{n!} \left[\int_Q \| z - x_0 \|_{\ell_1}^n d\mu(z) + \frac{1}{(n+1)h} \int_Q \| z - x_0 \|_{\ell_1}^{n+1} d\mu(z) \right].$$
(not to have a trivial case we take $\mu(Q) = m > 0$)
\[
\leq \frac{w}{n!} \left[\frac{1}{m^{\frac{1}{n+1}}} \left(\int_Q \|z - x_0\|_{\ell_1}^{n+1} d\mu(z) \right)^{\frac{n}{n+1}} \right] \\
+ \frac{1}{h} \left(\frac{1}{(n+1)} \int_Q \|z - x_0\|_{\ell_1}^{n+1} d\mu(z) \right)
\]
we choose
\[
h := \left(\int_Q \|z - x_0\|_{\ell_1}^{n+1} d\mu(z) \right)^{\frac{1}{n+1}} > 0,
\]
the case $h = 0$ is trivial and not discussed here)
\[
= \frac{wh^n}{n!} \left(m^{\frac{1}{n+1}} + \frac{1}{(n+1)} \right),
\]
i.e. we got that
\[
\int_Q |R_n(z, 0)| d\mu(z) \leq \frac{wh^n}{n!} \left(m^{\frac{1}{n+1}} + \frac{1}{(n+1)} \right),
\]
The validity of (59) is now clear. \square

By using Riesz Representation Theorem, Theorem 13 and expanding we obtain

Theorem 14. Let Q be a compact and convex subset of \mathbb{R}^k, $k \geq 1$. Let \tilde{L} be a positive linear operator from $C(Q)$ into itself. Consider $f \in C^n(Q)$, $n \in \mathbb{N}$. Then:
\[
|\tilde{L}(f)(x) - f(x)| \leq |\tilde{I}(x) - 1| |f(x)| \\
+ \sum_{j=1}^{n} \left\{ \sum_{|\alpha| = j} \left[\frac{|f_\alpha(x)|}{k} \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right)(x) \right) \right] \right\}
\]
\[
+ \left[(\tilde{L}(\|z - x\|_{\ell_1}^{n+1}))(x) \right]^{\frac{n}{n+1}} \left[(\tilde{L}(1))(x) \right]^{\frac{1}{n+1}} + \frac{1}{(n+1)} \\
\times \max_{|\alpha|=n} \omega_1 \left(((\tilde{L}(\|z - x\|_{\ell_1}^{n+1}))(x)) \right)^{\frac{1}{n+1}}, \quad \forall x \in Q. \quad (60)
\]

Next we give our fuzzy multidimensional related results.

Theorem 15. Let $Q := \{ x \in \mathbb{R}^k : \|x\|_{\ell_1} \leq 1 \}$, $k \geq 1$. Consider the fuzzy positive linear operator
\[
L : C^n_f(Q) \to C(Q), \quad n \in \mathbb{N},
\]
with the property
\[
(Lf)_{\pm}^{(r)} = \tilde{L}(f_{\pm}^{(r)}), \quad (62)
\]
respectively, for all $r \in [0, 1]$, $\forall f \in C^r_n(Q)$. Here \tilde{L} is a positive linear operator such that

$$\tilde{L} : C(Q) \to C(Q),$$

with $\tilde{L}(1, x) = 1$. Also $f_\alpha = \frac{\partial^\alpha f}{\partial x^\alpha}$ is the fuzzy partial derivative of f, where $\alpha := (\alpha_1, \ldots, \alpha_k)$, $\alpha_i \in \mathbb{Z}^+$, $i = 1, \ldots, k$, and $0 < |\alpha| := \sum_{i=1}^{k} \alpha_i \leq n$. Assume for $h > 0$ we have that $w^{(F)} := \max_{|\alpha|=n} \omega^{(F)}_1(f_\alpha, h) > 0$, where $\omega^{(F)}_1$ is the fuzzy modulus of continuity with respect to $\| \cdot \|_{\ell^1}$ relative to Q. Then

1) $\quad D((Lf)(x), f(x))$

$$\leq \sum_{j=1}^{n} \left\{ \sum_{|\alpha|=j} \left[\frac{(\tilde{L}((\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i}))(x))}{\prod_{i=1}^{k} \alpha_i!} D(f_\alpha, \partial) \right] \right\}$$

$$+ \left[(\tilde{L}(\|z - x\|_{\ell^1}))(x) \right] \frac{\phi_n(1 + \|x\|_{\ell^1})}{(1 + \|x\|_{\ell^1})} w^{(F)}, \quad \forall x \in Q. \quad (64)$$

2) $\quad D^*(Lf, f) \leq \sum_{j=1}^{n} \left\{ \sum_{|\alpha|=j} \left[\frac{(\tilde{L}((\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i}))(x))}{\prod_{i=1}^{k} \alpha_i!} \right] \right\}$

$$+ \left[\left(\tilde{L}(\|z - x\|_{\ell^1}))(x)\right) \frac{\phi_n(1 + \|x\|_{\ell^1})}{(1 + \|x\|_{\ell^1})} \right] w^{(F)}. \quad (65)$$

Proof. We have the following

\begin{align*}
D((Lf)(x), f(x)) &= \sup_{r \in [0, 1]} \max \left\{ |(Lf)^{(r)}(x) - f^{(r)}(x)|, |(Lf)^{(r)}_+ - f^{(r)}_+(x)| \right\} \\
&\overset{(62)}{=} \sup_{r \in [0, 1]} \max \left\{ |\tilde{L}(f^{(r)}_c) - f^{(r)}_c(x)|, |\tilde{L}(f^{(r)}_+) - f^{(r)}_+(x)| \right\} \\
&\quad \text{(by Remark 1 (2), (6) and (53))} \\
&\leq \sup_{r \in [0, 1]} \max \left\{ \sum_{j=1}^{n} \left[\sum_{|\alpha|=j} \left(\frac{|(f_\alpha)^{(r)}(x)|}{\prod_{i=1}^{k} \alpha_i!} \right) \left(\tilde{L}((\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i}))(x) \right) \right] \\
&\quad + \left(\tilde{L}(\|z - x\|_{\ell^1}))(x) \right) \frac{\phi_n(1 + \|x\|_{\ell^1})}{(1 + \|x\|_{\ell^1})} \max_{|\alpha|=n} \omega_1((f_\alpha)^{(r)}_-, h), \right\}
\end{align*}
Theorem 16. Let \(Q \subseteq \mathbb{R}^k, \ k \geq 1 \) be a compact convex subset. Consider the fuzzy positive linear operator

\[
L: C^n_f(Q) \to C(Q), \quad n \in \mathbb{N},
\]

with the property

\[
(Lf)^{(r)} = \tilde{L}(f^{(r)}),
\]

respectively, for all \(r \in [0, 1], \ \forall f \in C^n_f(Q). \) Here \(\tilde{L} \) is a positive linear operator such that \(\tilde{L}: C(Q) \to C(Q), \) with \(\tilde{L}(1, x) > 0, \ \forall x \in Q. \) Consider \(f \in C^n_f(Q). \) Then:

\[
\sum_{j=1}^{n} \left[\sum_{|\alpha|=j} \left(\frac{|(f_\alpha)^{(r)}(x)|}{\prod_{i=1}^{k} \alpha_i} \right) \left(\tilde{L}\left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right) \right]
\]

\[
+ (\tilde{L}(||z - x||_{\ell_1}))(x) \frac{\phi_n(1 + ||x||_{\ell_1})}{(1 + ||x||_{\ell_1})} \max_{|\alpha|=n} \omega_1((f_\alpha)^{(r)}, h)
\]

\[
\leq \sum_{j=1}^{n} \left[\sum_{|\alpha|=j} \left(\frac{D(f_\alpha(x), \tilde{\alpha})}{\prod_{i=1}^{k} \alpha_i!} \right) \left(\tilde{L}\left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right) \right]
\]

\[
+ (\tilde{L}(||z - x||_{\ell_1}))(x) \frac{\phi_n(1 + ||x||_{\ell_1})}{(1 + ||x||_{\ell_1})} \sup_{r \in [0, 1]} \max_{|\alpha|=n} \omega_1((f_\alpha)^{(r)}, h)
\]

\[
\times \max \left\{ \omega_1((f_\alpha)^{(r)}, h), \omega_1((f_\alpha)^{(r)}, h) \right\}
\]

(by Proposition 1)

\[
\sum_{j=1}^{n} \left[\sum_{|\alpha|=j} \left(\frac{D(f_\alpha(x), \tilde{\alpha})}{\prod_{i=1}^{k} \alpha_i!} \right) \left(\tilde{L}\left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right) \right]
\]

\[
+ (\tilde{L}(||z - x||_{\ell_1}))(x) \frac{\phi_n(1 + ||x||_{\ell_1})}{(1 + ||x||_{\ell_1})} \max_{|\alpha|=n} \omega_1^{(F)}(f_\alpha, h).
\]

Inequality (64) is established. \(\square \)

The next result follows.

Theorem 16. Let \(Q \subseteq \mathbb{R}^k, \ k \geq 1 \) be a compact convex subset. Consider the fuzzy positive linear operator

\[
L: C^n_f(Q) \to C(Q), \quad n \in \mathbb{N},
\]

with the property

\[
(Lf)^{(r)} = \tilde{L}(f^{(r)}),
\]

respectively, for all \(r \in [0, 1], \ \forall f \in C^n_f(Q). \) Here \(\tilde{L} \) is a positive linear operator such that \(\tilde{L}: C(Q) \to C(Q), \) with \(\tilde{L}(1, x) > 0, \ \forall x \in Q. \) Consider \(f \in C^n_f(Q). \) Then:
1) \[D((L_f)(x), f(x)) \leq |\tilde{L}(1)(x) - 1|D(f(x), \bar{\delta}) \]

\[+ \sum_{j=1}^{n} \left[\sum_{|\alpha| = j} \left(\frac{\| (\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right)) (x) \|_{\infty}}{\prod_{i=1}^{k} \alpha_i!} D(f_\alpha(x), \bar{\delta}) \right) \right] \]

\[+ (\tilde{L}(1)(x))^{\frac{1}{n+1}} (\tilde{L}(\|z - x\|_{{\tilde{L}}_1}^{n+1})(x))^{\frac{n}{n+1}} \left(\frac{3}{2n!} + \frac{1}{8(n - 1)!(n + 1)} \right) \]

\[\times \max_{|\alpha| = n} \omega^{(F)} \left(f_\alpha, \frac{1}{n+1} \right) \left(\frac{(\tilde{L}(\|z - x\|_{{\tilde{L}}_1}^{n+1})(x))}{\tilde{L}(1)(x)} \right), \forall x \in Q. \quad (66) \]

And

2) \[D^*(L_f, f) \leq \|\tilde{L}(1) - 1\|_{\infty} D^*(f, \bar{\delta}) \]

\[+ \sum_{j=1}^{n} \left[\sum_{|\alpha| = j} \left(\frac{\| (\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right)) (x) \|_{\infty}}{\prod_{i=1}^{k} \alpha_i!} D^*(f_\alpha, \bar{\delta}) \right) \right] \]

\[+ \|\tilde{L}(1)\|^{\frac{1}{n+1}} (\| (\tilde{L}(\|z - x\|_{{\tilde{L}}_1}^{n+1})(x))\|^{\frac{n}{n+1}} \left(\frac{3}{2n!} + \frac{1}{8(n - 1)!(n + 1)} \right) \]

\[\times \max_{|\alpha| = n} \omega^{(F)} \left(f_\alpha, \frac{1}{n+1} \right) \left(\frac{(\tilde{L}(\|z - x\|_{{\tilde{L}}_1}^{n+1})(x))}{\tilde{L}(1)(x)} \right) \|_{\infty}. \quad (67) \]

Proof. We observe the following:

\[D((L_f)(x), f(x)) = \sup_{r \in [0,1]} \max \{ |(L_f^r(\cdot))(x) - f^r(\cdot)(x)|, |(L_f^r(\cdot))(x) - f^r_+(\cdot)(x)| \} \]

\[= \sup_{r \in [0,1]} \max \{ |\tilde{L}(f^r_-(\cdot))(x) - f^r(\cdot)(x)|, |\tilde{L}(f^r_+(\cdot))(x) - f^r_+(\cdot)(x)| \} \]

\[\leq \sup_{r \in [0,1]} \max \left\{ |\tilde{L}(1)(x) - 1| |f^r(\cdot)(x)| \right\} \]

\[+ \sum_{j=1}^{n} \left[\sum_{|\alpha| = j} \left(\frac{|(f_\alpha)^r_-(\cdot)(x)|}{\prod_{i=1}^{k} \alpha_i!} \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) (x) \right) \right) \right] \]

\[+ (\tilde{L}(1)(x))^{\frac{1}{n+1}} (\tilde{L}(\|z - x\|_{{\tilde{L}}_1}^{n+1})(x))^{\frac{n}{n+1}} \left[\frac{3}{2n!} + \frac{1}{8(n - 1)!(n + 1)} \right] \]
Inequality (66) is proved.

Using Theorem 14 and working similarly as in the proof of Theorem 16 we obtain the very important
Theorem 17. Let $Q \subseteq \mathbb{R}^k$, $k \geq 1$ be a compact convex subset. Consider the fuzzy positive linear operator

$$L: C^n_F(Q) \to C(Q), \quad n \in \mathbb{N},$$

with the property

$$(Lf)^{(r)}_{\pm} = \tilde{L}(f^{(r)}_{\pm}),$$

respectively, for all $r \in [0, 1]$, $\forall f \in C^n_F(Q)$. Here \tilde{L} is a positive linear operator from $C(Q)$ into itself. Consider $f \in C^n_F(Q)$. Then:

1)

$$D((Lf)(x), f(x)) \leq |\tilde{L}(1)(x) - 1|D(f(x), \tilde{\partial})$$

$$+ \sum_{j=1}^{n} \left\{ \sum_{|\alpha| = j} \left| \frac{\left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x)}{\prod_{i=1}^{k} \alpha_i!} \right| D(f_{\alpha}(x), \tilde{\partial}) \right\}$$

$$+ \frac{\left(\tilde{L} \left(\|z - x\|_{\ell_1}^{n+1} \right)(x) \right)}{n!} \left((\tilde{L}(1)(x))^{\frac{1}{(n+1)}} + \frac{1}{(n+1)} \right)$$

$$\times \max_{|\alpha| = n} \omega_1^{(F)}(f_{\alpha}, (\tilde{L} \left(\|z - x\|_{\ell_1}^{n+1} \right)(x))^{\frac{1}{(n+1)}}, \forall x \in Q. \quad (68)$$

And

2)

$$D^*(Lf, f) \leq \|\tilde{L}1 - 1\|_{\infty} D^*(f, \tilde{\partial})$$

$$+ \sum_{j=1}^{n} \left. \left[\sum_{|\alpha| = j} \left(\frac{\left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x)}{\prod_{i=1}^{k} \alpha_i!} \right) D^*(f_{\alpha}, \tilde{\partial}) \right] \right\}$$

$$+ \frac{\left(\tilde{L} \left(\|z - x\|_{\ell_1}^{n+1} \right)(x) \right)}{n!} \left\| (\tilde{L}(1))^{\frac{1}{(n+1)}} \right\|$$

$$\times \max_{|\alpha| = n} \omega_1^{(F)}(f_{\alpha}, (\tilde{L} \left(\|z - x\|_{\ell_1}^{n+1} \right)(x))^{\frac{1}{(n+1)}}). \quad (69)$$

Next we give a fuzzy multivariate Korovkin type result.

Theorem 18. Let $Q \subseteq \mathbb{R}^k$, $k \geq 1$ be a compact convex subset. Consider the sequence of fuzzy positive linear operators

$$L_N: C^n_F(Q) \to C(Q), \quad n \geq 1, \quad \forall N \in \mathbb{N}$$

with the property

$$(L_N f)^{(r)}_{\pm} = \tilde{L}_N(f^{(r)}_{\pm}),$$
respectively, for all \(r \in [0, 1] \), \(\forall f \in C^n_f(Q) \). Here \(\tilde{L}_N \) is a sequence of positive linear operators from \(C(Q) \) into itself, \(\forall N \in \mathbb{N} \). Assume \(\| \tilde{L}_N(1) \| \leq \gamma \), \(\gamma > 0 \), \(\forall N \in \mathbb{N} \), and \(\tilde{L}_N(1) \xrightarrow{u} 1 \),

\[
\| (\tilde{L}_N(\| z - x \|^{n+1}))(x) \|_\infty \to 0, \quad \text{as } N \to \infty.
\]

Then \(D^*(L_N f, f) \to 0 \), as \(N \to \infty \), \(\forall f \in C^n_f(Q) \) at higher rate, i.e. \(L_N \to I \), as \(N \to \infty \), fuzzy and uniformly.

Proof. We use (69) and the following.

By Hölder’s inequality and Riesz Representation Theorem we obtain that

\[
\| (\tilde{L}_N(\| z - x \|^{j+1}))(x) \|_\infty \leq \gamma^{-1 - \frac{j}{n+1}} \| (\tilde{L}_N(\| z - x \|^{n+1}))(x) \|_{(n+1)}
\]

for \(j = 1, \ldots, n \). Therefore we get

\[
\| (\tilde{L}_N(\| z - x \|^{j+1}))(x) \|_\infty \to 0, \quad 1 \leq j \leq n,
\]

as \(N \to \infty \). Notice that

\[
(\tilde{L}_N(\| z - x \|^{j+1}))(x) = \sum_{|\alpha| = j} \frac{j!}{k!} \prod_{i=1}^k \alpha_i! \left(\tilde{L}_N \left(\prod_{i=1}^k |z_i - x_i|^{\alpha_i} \right) \right)(x).
\]

Hence, since in the last equality all parts are nonnegative, we have

\[
\frac{j!}{k!} \prod_{i=1}^k \alpha_i! \left(\tilde{L}_N \left(\prod_{i=1}^k |z_i - x_i|^{\alpha_i} \right) \right)(x) \leq (\tilde{L}_N(\| z - x \|^{j+1}))(x).
\]

Consequently we find that

\[
\left\| \left(\tilde{L}_N \left(\prod_{i=1}^k (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\|_{(n+1)} \leq \prod_{i=1}^k \alpha_i! \left\| (\tilde{L}_N(\| z - x \|^{j+1}))(x) \right\|_{\infty}.
\]

Thus

\[
\left\| \left(\tilde{L}_N \left(\prod_{i=1}^k (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\|_{\infty} \to 0,
\]

as \(N \to \infty \), for all \(\alpha : |\alpha| = j, \ j = 1, \ldots, n \). The claim is now established. \(\square \)
5. L_p-ESTIMATES, $p \geq 1$

From Anastassiou [5] we have

Theorem 19. Let K be a convex and compact subset of the real normed vector space $(V, \| \cdot \|)$. Let L be a fuzzy positive linear operator from $C_F(K)$ into itself with the property that there exists positive linear operator \tilde{L} from $C(K)$ into itself with $(Lf)_r = \tilde{L}(f)_r$, respectively for all $r \in [0,1]$, $\forall f \in C_F(K)$. Then

\[D(L(f)(x), f(x)) \leq \| \tilde{L}(1)(x) - 1 \| D(f(x), \tilde{o}) + \omega_1(f, (\tilde{L}(\| \cdot - x \|))(x))^{1/2} \min \{ \tilde{L}(1)(x), (\tilde{L}(1) + 1) \}, \quad \forall x \in K. \tag{70} \]

Furthermore we get

\[D^*(Lf, f) \leq D^*(f, \tilde{o})\| \tilde{L}1 - 1 \|_\infty + \min \{ \| \tilde{L}(1) + \sqrt{\tilde{L}(1)} \|_\infty, \| \tilde{L}(1) + 1 \|_\infty \} \omega_1(f, (\tilde{L}(\| \cdot - x \|))(x))^{1/2}, \tag{71} \]

and $\| \cdot \|_\infty$ stands for the sup-norm over K. In particular, if $\tilde{L}(1) = 1$ then (71) reduces to

\[D^*(Lf, f) \leq 2 \omega_1(f, (\tilde{L}(\| \cdot - x \|))(x))^{1/2}. \tag{72} \]

We give

Theorem 20. All as in the assumptions of Theorem 19, plus (K, A, μ) is a Borel measure space with $\mu(K) < \infty$, $p \geq 1$. Then

\[\left(\int_K D^p(L(f)(x), f(x))d\mu(x) \right)^{1/p} \leq \| \tilde{L}1 - 1 \|_\infty \left(\int_K D^p(f(x), \tilde{o})d\mu(x) \right)^{1/p} + \min \{ \| \tilde{L}(1) + \sqrt{\tilde{L}(1)} \|_\infty, \| \tilde{L}(1) + 1 \|_\infty \} \times \omega_1(f, (\tilde{L}(\| \cdot - x \|))(x))^{1/2}(\mu(K))^{1/p}. \tag{73} \]

Proof. Let $f, g \in C_F(K)$ and let $x_n \xrightarrow{\| \cdot \|} x_0$, $n \to \infty$, where $\{x_n\}_{n \in \mathbb{N}}$, $x_0 \in K$. We have

\[D(f(x_n), g(x_n)) \leq D(f(x_n), f(x_0)) + D(f(x_0), g(x_0)) + D(g(x_0), g(x_n)) \]
and

\[D(f(x_0), g(x_0)) \leq D(f(x_0), f(x_n) + D(f(x_n), g(x_n)) + D(g(x_n), g(x_0)). \]

Letting \(n \to +\infty \), from the continuity of \(f \) and \(g \) we find

\[\lim_{n \to +\infty} D(f(x_n), g(x_n)) = D(f(x_0), g(x_0)). \]

Therefore the function \(F(x) = D(f(x), g(x)) \), \(x \in K \) is a continuous real-valued function. Thus \(D(L(f)(x), f(x)) \) is continuous, hence Borel measurable. Finally using (70) and by integrating we obtain (73).

From now on the measure of integration will be the Lebesgue measure \(\lambda \), and \(\| \cdot \|_p \), \(p \geq 1 \) will be the \(L_p \)-norm.

We present

Theorem 21. Assume \(\tilde{L}(1, x) > 0 \), \(\forall x \in [a, b] \). All the rest as in Theorem 7. Then:

\[
\|D((Lf)(x), f(x))\|_p \leq \|\tilde{L} 1 - 1\|_\infty \|D(f(x), \tilde{\omega})\|_p \\
+ \sum_{k=1}^{n} \frac{\|\tilde{L}((t-x)^k, x)\|_\infty}{k!} \|D(f^{(k)}(x), \tilde{\omega})\|_p + (b-a)^{1/p} \\
\times \left[\frac{n \rho^2}{8} + \frac{\rho}{2} + \frac{1}{(n+1)} \right] \left(\|\tilde{L}(1)\|_\infty \right)^{\frac{1}{n+1}} \left(\|\tilde{L}((t-x)_{n+1}, x)\|_\infty \right)^{\frac{n}{n+1}} \\
\times \omega_1^{(F)} \left(f^{(n)}, \rho \left(\frac{\tilde{L}((t-x)_{n+1}, x)}{\tilde{L}(1, x)} \right)^{\frac{1}{n+1}} \right), \quad n \in \mathbb{N}. \quad (74)
\]

We also have

Theorem 22. Assume all as in Theorem 8. Then

\[
\|D((Lf)(x), f(x))\|_p \leq \|\tilde{L} 1 - 1\|_\infty \|D(f(x), \tilde{\omega})\|_p \\
+ \sum_{k=1}^{n} \frac{\|\tilde{L}((t-x)^k, x)\|_\infty}{k!} \|D(f^{(k)}(x), \tilde{\omega})\|_p \\
+ \frac{\|\tilde{L}((t-x+1)_{n+1}, x)\|_\infty}{n!} \left(\|\tilde{L}(1)\|_\infty + \frac{1}{(n+1)} \right)_{\infty} \\
\times \omega_1^{(F)} \left(f^{(n)}, \|\tilde{L}((t-x)_{n+1}, x)\|_\infty \right)^{\frac{1}{n+1}} (b-a)^{1/p}. \quad (75)
\]

Furthermore we list our multivariate fuzzy \(L_p \) results, \(p \geq 1 \).

Theorem 23. Assume all as in Theorem 15. Then

\[\|D((Lf)(x), f(x))\|_p \]

Theorem 24. Assume all as in Theorem 16. Then
\[\|D((Lf)(x), f(x))\|_p \leq \|\tilde{L}(1) - 1\|_\infty \|D(f(x), \tilde{\varnothing})\|_p \]
\[+ \sum_{j=1}^{n} \left\{ \sum_{|\alpha| = j} \left[\left\| \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\|_\infty \frac{\prod_{i=1}^{k} \alpha_i!}{\prod_{i=1}^{k} \alpha_i} \right\] \}
\[+ \|\tilde{L}(\|z - x\|_{\ell_1})(x)\|_\infty \left\| \frac{\phi_n(1 + \|x\|_{\ell_1})}{(1 + \|x\|_{\ell_1})} \right\|_\infty \omega^{(\mathcal{F})}(\lambda(Q))^{1/p}. \] (76)

We continue with

Theorem 25. Assume all as in Theorem 17. Then
\[\|D((Lf)(x), f(x))\|_p \leq \|\tilde{L}(1) - 1\|_\infty \|D(f(x), \tilde{\varnothing})\|_p \]
\[+ \sum_{j=1}^{n} \left\{ \sum_{|\alpha| = j} \left[\left\| \left(\tilde{L} \left(\prod_{i=1}^{k} (z_i - x_i)^{\alpha_i} \right) \right)(x) \right\|_\infty \frac{\prod_{i=1}^{k} \alpha_i!}{\prod_{i=1}^{k} \alpha_i} \right\] \}
\[+ \frac{\|\tilde{L}(\|z - x\|_{\ell_1})^{n+1}(x)\|_\infty^{1/(n+1)}}{n!} \left\| \left(\tilde{L}(1) \right)^{1/(n+1)} + \frac{1}{(n+1)} \right\|_\infty \]
\[\times \max_{|\alpha| = n} \omega^{(\mathcal{F})}_{\alpha} \left(f_{\alpha}, \|((\tilde{L}(\|z - x\|_{\ell_1})^{n+1})(x))\|_\infty^{1/(n+1)} \right) \lambda(Q)^{1/p}. \] (77)

We finish our main results with

6. APPLICATIONS

Let \(f \in C^1_{\mathbb{F}}([0, 1]) \), and the real Bernstein operators
\[(B_N(g))(x) := \sum_{k=0}^{N} g \binom{k}{N} x^k (1 - x)^{N-k}, \quad \forall x \in [0, 1], \forall g \in C^1([0, 1]). \]
We have \(B_N 1 = 1 \), \((B_N(id))(x) = x\), also \((B_N(\cdot-x))(x) = 0, \forall x \in [0,1]\). Furthermore we get
\[
(B_N((\cdot-x)^2))(x) = \frac{x(1-x)}{N} \leq \frac{1}{4N},
\]
with equality at \(x = \frac{1}{2} \). By (11) and (17) we obtain
\[
D(B_N^{(F)}(f)(x), f(x)) \leq \frac{3}{2} \sqrt{\frac{x(1-x)}{N} \omega_1^{(F)}(f', \sqrt{\frac{x(1-x)}{N}})}
\[
\leq \frac{3}{4\sqrt{N}} \omega_1^{(F)}(f', \frac{1}{2\sqrt{N}}), \quad (79)
\]
\(\forall N \in \mathbb{N}, \forall x \in [0,1], \forall f \in C^2([0,1]) \).
Clearly then \(\lim_{N \to +\infty} D^*(B_N^{(F)}(f), f) = 0 \), fuzzy and uniformly, \(\forall f \in C^2([0,1]) \), at higher speed than (13).

2) Inequality (68) for \(n = 1 \) becomes
\[
D((LF)(x), f(x)) \leq |\tilde{L}(1)(x) - 1|D(f(x), \delta)
\]
\[
+ \sum_{i=1}^k (|\tilde{L}(z_i - x_i)(x)|D(\frac{\partial f}{\partial x_i}(x), \delta))
\]
\[
+ \sqrt{((\tilde{L}(\|z - x\|^{2}_{\ell_i}))(x))} \left[\sqrt{(\tilde{L}(1)(x)) + \frac{1}{2}} \right]
\]
\[
\times \max_{i \in \{1, \ldots, k\}} \omega_1^{(F)}(\frac{\partial f}{\partial x_i}, \sqrt{((\tilde{L}(\|z-x\|^{2}_{\ell_i}))(x))}), \quad \forall x \in Q. \quad (80)
\]
If \(\tilde{L}(1)(x) = 1 \), \((\tilde{L}(z_i - x_i))(x) = 0, \forall x \in Q, \) all \(i = 1, \ldots, k, n = 1 \), then (68) reduces to
\[
D((LF)(x), f(x)) \leq \frac{3}{2} \sqrt{((\tilde{L}(\|z - x\|^{2}_{\ell_i}))(x))}
\]
\[
\times \max_{i \in \{1, \ldots, k\}} \omega_1^{(F)}(\frac{\partial f}{\partial x_i}, \sqrt{((\tilde{L}(\|z-x\|^{2}_{\ell_i}))(x))}), \quad \forall x \in Q. \quad (81)
\]
Let \(g \in C([0,1])^2 \), the two-dimensional Bernstein polynomials of \(g \) are defined by
\[
(B_{m,\overline{m}}(g))(t_1, t_2)
\]
\[
:= \sum_{k=0}^m \sum_{\ell=0}^{\overline{m}} g \left(\frac{k}{m}, \frac{\ell}{\overline{m}} \right) \left(\frac{m}{k} \right) \left(\frac{\overline{m}}{\ell} \right) t_1^k(1-t_1)^{m-k} t_2^\ell(1-t_2)^{\overline{m}-\ell}, \quad (82)
\]
for all \(t := (t_1, t_2) \in [0,1]^2 \), all \((m, \overline{m}) \in \mathbb{N}^2 \). It is known that \(B_{m,\overline{m}}(g) \to g \) uniformly on \([0,1]^2\). Clearly \((B_{m,\overline{m}}(1))(t_1 t_2) = 1, \forall (t_1, t_2) \in [0,1]^2, \forall (m, \overline{m}) \in \mathbb{N}^2\).
Using Schwarz’s inequality we get
\[
\sqrt{\langle (B_{m,n}(\| \cdot - t \|_{L^1}(t)) \rangle(t)} \leq \left(\frac{t_1(1-t_1)}{m} + \frac{t_2(1-t_2)}{\pi} \right) \leq \frac{1}{2} \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{\pi}} \right), \forall (m, \pi) \in \mathbb{N}^2, \forall t \in [0,1]^2. \tag{83}
\]

We have easily that
\[
(B_{m,n}(z_i - t_i))(t_1, t_2) = 0, \quad i = 1, 2. \tag{84}
\]

Next we define the fuzzy two-dimensional Bernstein operator \(s \) as follows
\[
(B_{m,n}(f))(t_1, t_2) := \sum_{k=1}^{m} \sum_{\ell=0}^{n} f \left(\frac{k}{m}, \frac{\ell}{\pi} \right) t^k (1-t_1)^{m-k} t_2^{\ell}(1-t_2)^{n-\ell}, \tag{85}
\]
\[\forall (t_1, t_2) \in [0,1]^2, \forall (m, \pi) \in \mathbb{N}^2, \forall f \in C_f([0,1]^2). \]

We observe as valid the following
\[
(B_{m,n}(f))^{(r)} = B_{m,n}(f^{(r)}), \tag{86}
\]
respectively, for all \(r \in [0,1], \forall f \in C_f([0,1]^2) \). Finally, by (81) and (83) we derive that
\[
D((B_{m,n}^{(F)}(f))(t_1, t_2), f(t_1, t_2)) \leq \frac{3}{2} \left(\sqrt{\frac{t_1(1-t_1)}{m}} + \sqrt{\frac{t_2(1-t_2)}{\pi}} \right) \times \max_{i \in \{1,2\}} \left\{ \omega_1^{(F)} \left(\frac{\partial f}{\partial x_i} \left(\sqrt{\frac{t_1(1-t_1)}{m}} + \sqrt{\frac{t_2(1-t_2)}{\pi}} \right) \right) \right\} \leq \frac{3}{4} \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{\pi}} \right) \max_{i \in \{1,2\}} \left\{ \omega_1^{(F)} \left(\frac{\partial f}{\partial x_i} \left(\frac{1}{2} \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{\pi}} \right) \right) \right) \right\}, \tag{87}
\]
\[\forall (m, \pi) \in \mathbb{N}^2, \forall (t_1, t_2) \in [0,1]^2, \forall f \in C_f^1([0,1]^2). \]

Clearly then \(\lim_{m,\pi \to \infty} D^*(B_{m,n}^{(F)}(f), f) = 0, \) fuzzy and uniformly, \(\forall f \in C^1_f([0,1]^2), \) at a higher rate.

One can give many similar other applications of our theorems.
ACKNOWLEDGMENTS

The author wishes to thank Professors C. Aliprantis of University of Purdue and S. Gal of University of Oradea, Romania, for having interesting discussions during the course of this work.

REFERENCES

