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1. Introduction

The study of set differential equations(SDE)[1] is useful as it encompasses the

study of scalar differential equations and vector differential equations as special cases

and further this study is done in a semilinear metric space. The monotone itera-

tive technique (MIT) [2] is a flexible mechanism to obtain monotone sequence that

converge to the extremal solutions of the considered problem.

The study of periodic boundary value problems(PBVP) is complicated and more

so in the case of SDEs, where the constraints are many. Hence the construction

of MIT for PBVP for set differential equations has not been done till now. In [3]

MIT for PBVP was developed using monotone sequences, which are solutions of

the initial value problem [IVPs] of linear differential equations. These solutions are

unique and hence the monotone sequences obtained are unique and they converge to a

unique function which is shown to be a solution of the considered PBVP. The special

advantage obtained with this approach is that working with IVPs of linear differential

equations is easy and the uniqueness of the solution of the PBVP is guaranteed with

no extra assumptions or effort.

In this paper, using the approach utilized in [3] we develop the MIT for PBVP

for SDEs.

2. Preliminaries

We begin with the definition of Kc (Rn), the semilinear metric space in which we

work.We next define the Hausdorff metric and Hukuhara difference and proceed to

define the Hukuhara derivative and Hukuhara integral. Further we also state some
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important properties that are useful tools in our paper. We also define a partial order

in Kc (Rn), see [1]

Let Kc(R
n) denote the collection of all nonempty, compact and convex subsets

of R
n. We define the Hausdorff metric by

D[A, B] = max

[

sup
x∈B

d(x, A), sup
y∈A

d(y, B)

]

, (2.1)

where d(x, A) = inf[d(x, y) : y ∈ A], A and B are bounded sets in R
n. We note that

Kc(R
n) with this metric is a complete metric space.

It is known that if the space Kc(R
n) is equipped with the natural algebraic op-

erations of addition and non-negative scalar multiplication, then Kc(R
n) becomes a

semilinear metric space which can be embedded as a complete cone into a correspond-

ing Banach space. The Hausdorff metric (2.1) satisfies the following properties:

D[A + C, B + C] = D[A, B] and D[A, B] = D[B, A], (2.2)

D[λA, λB] = λD[A, B], (2.3)

D[A, B] ≤ D[A, C] + D[C, B], (2.4)

for all A, B, C ∈ Kc(R
n) and λ ∈ R+.

Let A, B ∈ Kc(R
n). The set C ∈ Kc(R

n) satisfying A = B + C is known as the

Hukuhara difference of the sets A and B and is denoted by the symbol A − B. We

say that the mapping F : I → Kc(R
n) has a Hukuhara derivative DHF (t0) at a point

t0 ∈ I, if

lim
h→0+

F (t0 + h) − F (t0)

h
and lim

h→0+

F (t0) − F (t0 − h)

h

exist in the topology of Kc(R
n) and are equal to DHF (t0). Here I is any interval in

R.

With these preliminaries, we consider the set differential equation

DHU = F (t, U), U(t0) = U0 ∈ Kc(R
n), t0 ≥ 0, (2.5)

where F ∈ C[R+×Kc(R
n), Kc(R

n)]. The mapping U ∈ C1[J, Kc(R
n)], J = [t0, t0 +a]

is said to be a solution of (2.5) on J if it satisfies (2.5) on J . Since U(t) is continuously

differentiable, we have

U(t) = U0 +

∫ t

t0

DHU(s)ds, t ∈ J. (2.6)

Hence, we can associate with the IVP (2.5) the Hukuhara integral

U(t) = U0 +

∫ t

t0

F (s, U(s))ds, t ∈ J. (2.7)

where the integral is the Hukuhara integral which is defined as,
∫

F (s)ds =

{
∫

f(s)ds : f is any continuous selector of F

}
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Observe also that U(t) is a solution of (2.5) on J iff it satisfies (2.7) on J .

We now proceed to define a partial order in the metric space (Kc(R
n), D). We

begin with the definition of a cone in this set up.

Let K(Ko) be the subfamily of Kc(R
n) consisting of set U ∈ Kc(R

n) such that

any u ∈ U is a non-negative (positive) vector of n components satisfying ui ≥ 0

(ui > 0) for i = 1, . . . , n. Then K is a cone in Kc(R
n) and K0 is the nonempty

interior of K.

Definition 2.1. For any U and V ∈ Kc(R
n), if there exists Z ∈ Kc(R

n) such that

Z ∈ K(K0) and U = V + Z then we say that U ≥ V (U > V ). Similarly we can

define U ≤ V (U < V ).

We state the following results from [1] to develop the MIT for the considered

problem

Theorem 2.2. Assume that

(a) Let V, W ∈ C1[R+, Kc(R
n)], F ∈ C[R+×Kc(R

n), Kc(R
n)], F (t, X) is monotone

nondecreasing in X for each t ∈ R+ and DHV ≤ F (t, V ), DHW ≥ F (t, W ),

t ∈ R+;

(b) for any X, Y ∈ Kc(R
n) such that X ≥ Y , t ∈ R+, F (t, X) ≤ F (t, Y )+L(X−Y )

for some L > 0. Then V (t0) ≤ W (t0) implies V (t) ≤ W (t), t ≥ t0.

Corollary 2.3. Let V, W ∈ C1[R+, Kc(R
n)], σ ∈ C[R+, Kc(R

n)]. Suppose that

DHV ≤ σ, DHW ≥ σ, for t ≥ t0. Then V (t) ≤ W (t), t ≥ t0, provided V (t0) ≤

W (t0).

Theorem 2.4. If {Un(t)} is a sequence of equicontinuous and equibounded multimap-

pings defined on an interval J , we can extract a subsequence that converges uniformly

to a continuous multimapping U(t) on J .

3. Monotone iterative technique

In this section, we develop MIT to obtain a solution for the PBVP for SDE given

by

DHU = F (t, U) + G(t, U), U(0) = U(T ), (3.1)

where F, G ∈ C[J × Kc(R
n), Kc(R

n)] and J = [0, T ].

We need the following definition which gives several possible notions of lower and

upper solutions relative to (3.1).

Definition 3.1. Let V, W ∈ C[J, Kc(R
n)]. Then V, W are said to be
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(a) natural lower and upper solutions of (3.1) if

DHV ≤ F (t, V ) + G(t, V ), V (0) ≤ V (T )

DHW ≥ F (t, W ) + G(t, W ), W (0) ≥ W (T ), t ∈ J ;

}

(3.2)

(b) coupled lower and upper solutions of Type I of (3.1) if

DHV ≤ F (t, V ) + G(t, W ), V (0) ≤ V (T ),

DHW ≥ F (t, W ) + G(t, V ), W (0) ≥ W (T ), t ∈ J ;

}

(3.3)

(c) coupled lower and upper solutions of Type II of (3.1) if

DHV ≤ F (t, W ) + G(t, V ), V (0) ≤ V (T ),

DHW ≥ F (t, V ) + G(t, W ), W (0) ≥ W (T ), t ∈ J ;

}

(3.4)

(d) coupled lower and upper solutions of Type III of (3.1) if

DHV ≤ F (t, W ) + G(t, W ), V (0) ≤ V (T ),

DHW ≥ F (t, V ) + G(t, V ), W (0) ≥ W (T ), t ∈ J.

}

(3.5)

We observe that whenever we have V (t) ≤ W (t), t ∈ J , if F (t, X) is nondecreas-

ing in X for each t ∈ J and G(t, Y ) is nonincreasing in Y for each t ∈ J , the lower

and upper solutions defined by (3.2) and (3.5) reduce to (3.4) and consequently, it is

sufficient to investigate the cases (3.3) and (3.4).

We now proceed to use the notions developed above and develop the monotone

iterative technique for the periodic boundary value problem. In this paper we use

sequence of iterates which are solutions of IVPs for linear set differential equations.

Since the solution of the linear SDE is unique, the sequence of iterates is a unique

sequence converging to an extremal solution of the PBVP. In this approach, we do

not need to prove the existence of the solutions of the PBVP for SDE, as it follows

from the construction of the monotone sequences.

Theorem 3.2. Assume that

(A1) V, W ∈ C1[J, Kc(R
n)] are coupled lower and upper solutions of Type I relative

to (3.1) with V (t) ≤ W (t), t ∈ J ;

(A2) F, G ∈ C[J × Kc(R
n), Rn], F (t, X) is nondecreasing in X for each t ∈ J and

G(t, Y ) is nonincreasing in Y for each t ∈ J ;

(A3) F and G map bounded sets into bounded sets in Kc(R
n).

Then there exist monotone sequences {Vn}, {Wn} in Kc(R
n) such that Vn → ρ,

Wn → R in Kc(R
n) where (ρ, R) are the coupled minimal and maximal solutions of

(3.1), that is, they satisfy

DHρ = F (t, ρ) + G(t, R), ρ(0) = ρ(T ),

DHR = F (t, R) + G(t, ρ), R(0) = R(T ).
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Proof. For each n ≥ 0,

DHVn+1 = F (t, Vn) + G(t, Wn), Vn+1(0) = Vn(T ), (3.6)

DHWn+1 = F (t, Wn) + G(t, Vn), Wn+1(0) = Wn(T ), (3.7)

where V (0) ≤ U(0) ≤ W (0). We set V0 = V , W0 = W .

Our aim is to prove

V0 ≤ V1 ≤ · · · ≤ Vn ≤ Wn ≤ · · · ≤ W1 ≤ W0, t ∈ J. (3.8)

Since Vo is the coupled lower solution of Type I of (3.1), we have, using the fact

V0 ≤ W0 and the nondecreasing character of F ,

DHV0 ≤ F (t, V0) + G(t, W0).

Also from (3.6) we get for n = 0,

DHV1 = F (t, V0) + G(t, W0), (3.9)

V1(0) = V0(T ). (3.10)

Clearly equations (3.9), (3.10) have a unique solution denoted by V1(t), t ∈ J Con-

sequently following the proof of Theorem 2.2, we arrive at V0 ≤ V1 on J . A similar

argument shows that W1 ≤ W0 on J . For the purpose of showing V1 ≤ W1, consider

(3.9), (3.10) along with

DHW1 = F (t, W0) + G(t, V0), (3.11)

W1(0) = W0(T ). (3.12)

Then the monotone nature of F and G yield

DHV1 ≤ F (t, W0) + G(t, W0), DHW1 = F (t, W0) + G(t, W0), t ∈ J,

and also W1(0) ≥ V1(0). By Corollary 2.3, we get V1 ≤ W1 on J . Thus,

V0 ≤ V1 ≤ W1 ≤ W0, on J. (3.13)

Assume that for j ≥ 1,

Vj−1 ≤ Vj ≤ Wj ≤ Wj−1, on J. (3.14)

Then we will show that

Vj ≤ Vj+1 ≤ Wj+1 ≤ Wj , on J. (3.15)

To do this consider,

DHVj = F (t, Vj−1) + G(t, Wj−1), (3.16)

Vj(0) = Vj−1(T ), (3.17)

DHVj+1 = F (t, Vj) + G(t, Wj), (3.18)

Vj+1(0) = Vj(T ). (3.19)
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The relations (3.14), (3.17) and (3.19) yield Vj(0) ≤ Vj+1(0). Further,

DHWj+1 ≥ F (t, Vj) + G(t, Wj) ≥ F (t, Vj−1) + G(t, Wj−1) t ∈ J.

Here we employed (3.14), and the monotone nature of F and G. Applying Corollary

2.3, we get Vj ≤ Vj+1 on J . Similarly we get Wj+1 ≤ WJ on J . Next we show that

Vj+1 ≤ Wj+1, t ∈ J . We have from (3.6), (3.7)

DHVj+1 = F (t, Vj) + G(t, Wj), Vj+1(0) = Vj(T ), (3.20)

DHWj+1 = F (t, Wj) + G(t, Vj), Wj+1(0) = Wj(T ). (3.21)

Using (3.14) and monotone character of F and G, we arrive at

DHVj+1 ≤ F (t, Wj) + G(t, Wj), (3.22)

DHWj+1 ≥ F (t, Wj) + G(t, Wj). (3.23)

Also Vj+1(0) = Vj(T ) ≤ Wj(T ) = Wj+1(0), and therefore Corollary 2.3 yields that

Vj+1 ≤ Wj+1, t ∈ J . Hence (3.15) follows and consequently, by induction (3.15) is

valid for all n. Clearly the sequences {Vn},{Wn} are uniformly bounded on J . To

show that these sequences are equicontinuous, consider for any s ≥ t, where t, s ∈ J ,

D[Vn(t), Vn(s)] = D
[

U0 +

∫ t

0

(F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ,

U0 +

∫ s

0

(F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ
]

= D

[

∫ t

0

(F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ,

∫ s

0

(F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ
]

≤

∫ t

s

D[(F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ, θ]dξ ≤ M |t − s|.

Here we utilized the properties of integral and the metric D, together with the fact

F + G are bounded since {Vn}, {Wn} are uniformly bounded. Hence {Vn(t)} is

equicontinuous on J . The corresponding Ascoli’s theorem, Theorem 2.4, gives a

subsequence {Vnk
} which converges uniformly to ρ(t) ∈ Kc(R

n), t ∈ J , and since

{Vn(t)} is nondecreasing sequence, the entire sequence {Vn(t)} converges uniformly

to ρ(t) on J .

Similar arguments apply to the sequence {Wn(t)} and we obtain Wn(t) → R(t)

uniformly on J . It therefore follows, using the integral representation of (3.6), (3.7)

that ρ(t), R(t) satisfy

DHρ(t) = F (t, ρ(t)) + G(t, R(t)), ρ(0) = ρ(T );

DHR(t) = F (t, R(t)) + G(t, ρ(t)), R(0) = R(T ).
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and that

V0 ≤ ρ ≤ R ≤ W0, t ∈ J.

Next we claim that (ρ, R) are coupled minimal and maximal solutions of (3.1), that

is U(t) is any solution of (3.1) such that

V0 ≤ U ≤ W0, t ∈ J. (3.24)

then

V0 ≤ ρ ≤ U ≤ R ≤ W0, t ∈ J. (3.25)

Suppose that for some n,

Vn ≤ U ≤ Wn on J. (3.26)

Then we have using the monotone nature of F , G and (3.1)

DHU = F (t, U) + G(t, U) ≥ F (t, Vn) + G(t, Wn), U(0) = U(T ).

DHVn+1 = F (t, Vn) + G(t, Wn), Vn+1(0) = Vn(T ).

Corollary 2.3 yields, Vn+1 ≤ U on J . Similarly Wn+1 ≥ U on J . Hence by induction

(3.26) is true for all n ≥ 1. Now taking the limit as n → ∞, we get (3.25), proving

the claim. The proof is therefore complete.

Corollary 3.3. If, in addition to the assumptions of Theorem 3.2, F and G satisfy,

whenever X ≥ Y , X, Y ∈ Kc(R
n),

F (t, X) ≤ F (t, Y ) + N1(X − Y )

and

G(t, X) + N2(X − Y ) ≥ G(t, Y )

where N1, N2 > 0. Then ρ = R = U is the unique solution of (3.1) .

Proof. Since ρ ≤ R, we have R = ρ + m or m = R − ρ. Now

DHρ + DHm = DHR = F (t, R) + G(t, ρ)

≤ F (t, ρ) + N1(m) + G(t, R) + N2(m)

= DHρ + (N1 + N2)m

which means

DHm ≤ (N1 + N2)m, m(0) = 0

which by Theorem 2 leads to R ≤ ρ on J , proving the uniqueness of ρ = R = U ,

completing the proof.

Remark 3.4. (1) In Theorem 3.2, if G(t, Y ) = 0, then we get a result when F is

non decreasing.

(2) If F (t, X) = 0 in Theorem 3.2, then we obtain the results for G non increasing.
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It can be observed that the iterative scheme used in Theorem 3.2 is in tune with

the assumed hypothesis of the existence of lower and upper solutions of Type I. The

idea of using iterative scheme parallel to the lower and upper solutions of Type II

was introduced in [4] and continued in the works of [3,5,6] for developing monotone

iterative technique for different problems. In Theorem 3.2 we have used standard

iterates while in the following theorem we propose to use iterates corresponding to

lower and upper solutions of Type II, with the hypothesis that lower and upper

solutions of Type I exist. This forces us to consider the initial conditions of the

iterates of IVPs in the following theorem in a special way, as used in [7].

Theorem 3.5. Let the hypothesis of Theorem 3.2 hold and U(t) be any solution of

SDE (3.1) with V0 ≤ U ≤ W0 on J . Then the iterative scheme given by

DHVn+1 = F (t, Wn) + G(t, Vn), (3.27)

Vn+1(0) = Wn(T ). (3.28)

and

DHWn+1(t) = F (t, Vn) + G(t, Wn), (3.29)

Wn+1(0) = Vn(T ). (3.30)

yield alternating sequences {V2n, W2n+1} converging to ρ and {W2n, V2n+1} converging

to R uniformly on J such that the relation

V0 ≤ W1 ≤ · · · ≤ V2n ≤ W2n+1 ≤ U ≤ V2n+1 ≤ W2n ≤ · · · ≤ V1 ≤ W0. (3.31)

holds on J . Further ρ and R are coupled minimal and maximal solutions of Type II

for the SDE (3.1) satisfying ρ ≤ U ≤ R on J .

Proof. Clearly the IVPs (3.27), (3.28), (3.29) and (3.30) have unique solutions for

each n = 0, 1, 2, . . . denoted by Vn+1(t) and Wn+1(t) respectively. Setting n = 0 in

the iterative scheme we obtain that V1 and W1 are solutions of the IVPs for SDEs

given by

DHV1 = F (t, W0) + G(t, V0), (3.32)

V1(0) = W0(T ), (3.33)

and

DHW1(t) = F (t, V0) + G(t, W0), (3.34)

W1(0) = V0(T ). (3.35)

Also since V0 and W0 are lower and upper solutions of Type I, we have

DHV0(t) ≤ F (t, V0) + G(t, W0), (3.36)

V0(0) ≤ V0(T ), (3.37)
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and

DHW0(t) ≥ F (t, W0) + G(t, V0), (3.38)

W0(0) ≥ W0(T ). (3.39)

Further,

W0(0) ≥ W0(T ) = V1(0). (3.40)

0n applying Corollary 2.3 to the relations (3.32), (3.38), (3.40) we arrive at

V1 ≤ W0 on J. (3.41)

The relations (3.35) and (3.37) yield that

V0(0) ≤ W1(0). (3.42)

Again using Corollary 2.3 on the relations (3.34), (3.36) and (3.42) we get

V0 ≤ W1 on J. (3.43)

We claim that W1 ≤ U ≤ V1 on J and the proof is as follows. Since U is a solution

of the SDE (3.1),

DHU = F (t, U) + G(t, U), (3.44)

U(0) = U(T ), (3.45)

and from hypothesis V0 ≤ U ≤ W0 on J . Since F and G are monotone,

DHU ≥ F (t, W0) + G(t, V0), (3.46)

Also,

U(0) = U(T ) ≤ W0(T ) = V1(0). (3.47)

The relations (3.32), (3.46) and (3.47), on applying Corollary 2.3, give U ≤ V1 on J .

Similarly, we can show that W1 ≤ U on J . Thus, V0 ≤ W1 ≤ U ≤ V1 ≤ W0 on J . We

now proceed to prove that V0 ≤ W1 ≤ V2 ≤ W3 ≤ U and U ≤ V3 ≤ W2 ≤ V1 ≤ W0

on J . To do this, set n = 1 in (3.27), then

DHV2 = F (t, W1) + G(t, V1), V2(0) = W1(T ). (3.48)

Using the monotone nature of F and G in (3.48) gives

DHV2 ≥ F (t, V0) + G(t, W0), (3.49)

and

V2(0) = W1(T ) ≥ V0(T ) = W1(0). (3.50)

Now the relations (3.34), (3.49) and (3.50) together with Corollary 2.3 yield W1 ≤ V2

on J . Working in a similar fashion we arrive at

DHW2 ≤ F (t, V0) + G(t, W0), (3.51)
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and

W2(0) = V1(0). (3.52)

Applying Corollary 2.3 to the relations (3.32), (3.51) and (3.52) leads to W2 ≤ V1 on

J . To prove V2 ≤ W3, set n = 1 in (3.27), (3.28) and n = 2 in (3.29), (3.30) then

iDHV2 = F (t, W1) + G(t, V1),

V2(0) = W1(T ).

and

DHW3 = F (t, V2) + G(t, W2),

W2(0) = V2(T ).

Since W1 ≤ V2 and W2 ≤ V1 on J , using the monotone nature of F and G gives

DHW1 ≥ F (t, W1) + G(t, V1),

and using the fact that

W3(0) = V2(T ) ≥ W1(T ) = V2(0)

we conclude, by Corollary 2.3, that V2 ≤ W3 on Jr. Working as earlier, it can be

easily shown that W3 ≤ U ≤ V3 on J . Now assume that the relation (3.31) holds for

some integer n = k such that

W2k−1 ≤ V2k ≤ W2k+1 ≤ U ≤ V2k+1 ≤ W2k ≤ V2k−1. (3.53)

To apply mathematical induction we need to prove that

W2k+1 ≤ V2k+2 ≤ W2k+3 ≤ U ≤ V2k+3 ≤ W2k+2 ≤ V2k+1 on J. (3.54)

For this, set n = 2k + 1 in (3.27), (3.28) and n = 2k in (3.29), (3.30). Then,

DHV2k+2 = F (t, W2k+1) + G(t, V2k+1), V2k+2(0) = W2k+1(T ) (3.55)

and

DHW2k+1 = F (t, V2k) + G(t, W2k), W2k+1(0) = V2k(T ). (3.56)

By the monotone nature of F and G and since V2k ≤ W2k+1, V2k+1 ≤ W2k we get,

DHV2k+2 ≥ F (t, V2k) + G(t, W2k), (3.57)

and

V2k+2(0) = W2k+1(T ) ≥ V2k(T ) = W2k+1(0). (3.58)

From the relations (3.56), (3.57) and (3.58), on applying Corollary 2.3, we obtain

V2k ≤ W2k+1 on J . Similarly, V2k+2 ≤ W2k+3, W2k+2 ≤ V2k+1 and V2k+3 ≤ W2k+2 all

hold on J .
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To show that V2k+2 ≤ U . The fact that U is a solution of (3.1) and from (3.53),

using the monotone character of F and G, we arrive at,

DHU = F (t, W2k+1) + G(t, V2k+1)

U(0) = U(T ) ≥ W2k+1(T ) = V2k+2(0).

Applying Corollary 2.3, to the above relations along with relation (3.55) gives V2k+2 ≤

U on J . Working as in the above case, we can show that U ≤ W2k+2, W2k+3 ≤ U ,

U ≤ V2k+3 and V2k+2 ≤ U on J . Thus we are in a position to apply mathematical

induction and claim that the relation (3.31) holds. Working as in Theorem 3.2, we

can show that the sequences {V2n}, {V2n+1}, {W2n}, {W2n+1} are equicontinuous and

uniformly bounded. Thus from Theorem 2.4, which is the Arzela-Ascoli theorem for

sequences of set functions, and the monotone nature of the sequences, we conclude

that they are uniformly convergent and that V2n → ρ, W2n+1 → ρ and W2n → R and

V2n+1 → R as n → ∞.

The proof is complete if we show that ρ and R are coupled minimal and maximal

solutions of the SDE (3.1). This follows by considering the corresponding Hukuhara

integral and using the properties of uniform continuity of F and G and uniform

convergence of the sequences {V2n}, {W2n+1}, and {V2n+1}, {W2n}. As the details

are routine, we omit them and the proof of the theorem is complete.

Remark 3.6. A close analysis of the above two theorems suggests that if we propose

to develop the MIT for the PBVP of set differential equations using coupled lower

and upper solutions of Type II, then we can do so by considering two different types

of iterates of the linear IVPs used in Theorem 3.2 and Theorem 3.5.

It can be observed that if we use the iterates in Theorem 3.2, in association with

coupled lower and upper solutions of Type II then the initial values must be of the

type Vn+1(0) = Vn(T ) and Wn+1(0) = Wn(T ). But if use the iterates in Theorem 3.5,

along with the coupled lower and upper solutions of Type II, we need to take the

initial conditions as Vn+1(0) = Wn(T ) and Wn+1(0) = Vn(T ). With this observation

we state the following two results and omit the proof as they are very similar to the

earlier theorems.

Theorem 3.7. Assume that hypotheses (A2) and (A3) of Theorem 3.2 hold and

V0, W0 are coupled lower and upper solutions of Type II with V0(t) ≤ W (t). Further,

for every n ≥ 1, let the iterates be given by

DHVn+1 = F (t, Vn) + G(t, Wn),

Vn+1(0) = Vn(T ),

DHWn+1 = F (t, Wn) + G(t, Vn),

Wn+1(0) = Wn(T ).
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Then there exist monotone sequences {Vn} and {Wn} such that V0 ≤ V1 ≤ · · · ≤ Vn ≤

Wn ≤ · · · ≤ W1 ≤ W0 on J , which converge uniformly to ρ and R respectively, where

ρ and R are coupled minimal and maximal solutions of SDE (3.1).

Theorem 3.8. Assume that the assumptions (A2) and (A3) of Theorem 3.2 hold.

Further, let V0, W0 be coupled lower and upper solutions of Type II for the SDE

(3.1) such that V0(t) ≤ W0(t) for t ∈ J . Then for any solution U of SDE (3.1)

with V0(t) ≤ U(t) ≤ W0(t), t ∈ J , there exist alternating sequences {V2n}, {W2n+1},

{V2n+1}, {W2n} satisfying V0 ≤ W1 ≤ · · · ≤ W2n+1 ≤ U ≤ V2n+1 ≤ · · · ≤ V1 ≤ W0 on

J , for every n ≥ 1, where V2n → ρ, W2n+1 → ρ and W2n → R, and W2n+1 → R. The

iterative schemes are given by the relations (3.7) and (3.8).
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