GENERALIZATION OF SOME HADAMARD PRODUCT

ABDELHAMID ABDERREZZAK1, MOHAMED KERADA2§, AND ALI BOUSSAYOUD3

1University of Paris 7
LITP, Place Jussieu, Paris cedex 05, FRANCE
2LMAM Laboratory and Department of Computer Science
Mohamed Seddik Ben Yahia University
Jijel, ALGERIA
3LMAM Laboratory and Department of Mathematics
Mohamed Seddik Ben Yahia University
Jijel, ALGERIA

ABSTRACT: In this paper, we introduce a new operator in order to derive some new symmetric properties of Hadamard product.

AMS Subject Classification: 05E05, 11B39

1. NOTATIONS AND MAIN RESULTS

Let k and n be two positive integer and \{\textit{x}_{1}, \textit{x}_{2}, ..., \textit{x}_{n}\} are set of given variables, recall [6] that the k-th elementary symmetric function $e_{k}(\textit{x}_{1}, \textit{x}_{2}, ..., \textit{x}_{n})$ and the k-th complete homogeneous symmetric function $h_{k}(\textit{x}_{1}, \textit{x}_{2}, ..., \textit{x}_{n})$ are defined respectively by

$$
e_{k}(\textit{x}_{1}, \textit{x}_{2}, ..., \textit{x}_{n}) = \sum_{i_{1}+i_{2}+...+i_{n}=k} \textit{x}_{1}^{i_{1}}\textit{x}_{2}^{i_{2}}...\textit{x}_{n}^{i_{n}}, \quad 0 \leq k \leq n,$$

with $i_{1}, i_{2}, ..., i_{n} = 0$ or 1.

$$
h_{k}(\textit{x}_{1}, \textit{x}_{2}, ..., \textit{x}_{n}) = \sum_{i_{1}+i_{2}+...+i_{n}=k} \textit{x}_{1}^{i_{1}}\textit{x}_{2}^{i_{2}}...\textit{x}_{n}^{i_{n}}, \quad 0 \leq k \leq n,$$

with $i_{1}, i_{2}, ..., i_{n} \geq 0$.
First, we set \(e_0(x_1, x_2, \ldots, x_n) = 1\) and \(h_0(x_1, x_2, \ldots, x_n) = 1\) (by convention). For \(k > n\) or \(k < 0\), we set \(e_k(x_1, x_2, \ldots, x_n) = 0\) and \(h_k(x_1, x_2, \ldots, x_n) = 0\).

Remark 1. Let \(B = \{b_1, b_2, \ldots, b_n\}\) an alphabet, we have

\[h_k(b_1, b_2, \ldots, b_n) = S_k(b_1 + b_2 + \ldots + b_n)\]

Define the Hadamard product of two entire series or two functions analytic at the origin, a and b, as their termwise product,

\[a(z) \odot b(z) = \sum_{n \geq 0} a_n b_n z^n, \text{ if } a(z) = \sum_{n \geq 0} a_n z^n, \text{ b}(z) = \sum_{n \geq 0} b_n z^n.\]

Definition 1. [1] Let \(A\) and \(E\) be any two alphabets, then we give \(S_n(A - E)\) by the following form:

\[
\frac{\Pi_{e\in E}(1 - ze)}{\Pi_{a\in A}(1 - za)} = \sum_{j=0}^{\infty} S_n(A - E)z^j, \tag{1.1}
\]

with the condition \(S_n(A - E) = 0\) for \(n < 0\).

Definition 2. [2] Given a function \(f\) on \(\mathbb{R}^n\), the divided difference operator is defined as follows:

\[
\partial_{x_ix_i+1}(f) = \frac{f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x_{i+1}, x_i, x_{i+2} \ldots x_n)}{x_i - x_{i+1}}.
\]

Definition 3. [4] The symmetrizing operator \(\delta_{e_1e_2}^k\) is defined by

\[
\delta_{e_1e_2}^k(f) = \frac{e_1^k f(e_1) - e_2^k f(e_2)}{e_1 - e_2} \text{ for all } k \in \mathbb{N}. \tag{1.2}
\]

Proposition 1. [3] Let \(E = \{e_1, e_2\}\) an alphabet, we define the operator \(\delta_{e_1e_2}^k\) as follows:

\[
\delta_{e_1e_2}^k f(e_1) = h_{k-1}^{(2)}(e_1, e_2) f(e_1) + e_2^k \partial_{e_1e_2} f(e_1), \text{ for all } k \in \mathbb{N}.
\]

In our main result, we will combine all these results in a unified way such that all these obtained results can be treated as special case of the following theorem.

Theorem 1. Given two alphabets \(E = \{e_1, e_2\}\) and \(A = \{a_1, a_2, \ldots, a_n\}\) then

\[
\sum_{n=0}^{\infty} h_n^{(n)}(a_1, a_2, \ldots, a_n) h_{k+n-1}^{(2)}(e_1, e_2) z^n = \sum_{n=0}^{k-1} S_n(-A) e_1^n e_2^n h_{k+n-1}^{(2)}(e_1, e_2) z^n - (e_1 e_2 z)^k \sum_{n=0}^{\infty} S_{n+k+1}(-A) h_{n}^{(2)}(e_1, e_2) z^{n+1} \left(\sum_{n=0}^{\infty} S_n(-A)(e_1 z)^n\right) \left(\sum_{n=0}^{\infty} S_n(-A)(e_2 z)^n\right). \tag{1.3}
\]
Proof. Let $\sum_{n=0}^{\infty} S_n(A) z^n$ and $\sum_{n=0}^{\infty} S_n(-A) z^n$ be two sequences as $\sum_{n=0}^{\infty} S_n(A) z^n \times \sum_{n=0}^{\infty} S_n(-A) z^n = 1$.

On one hand, since $f(e_1) = \sum_{n=0}^{\infty} h_n^{(n)}(a_1, a_2, \ldots, a_n) e_1^n z^n$, we have

$$
\delta_{e_1 e_2}^k f(e_1) = \delta_{e_1 e_2}^k \left(\sum_{n=0}^{\infty} h_n^{(n)}(a_1, a_2, \ldots, a_n) e_1^n z^n \right) = \sum_{n=0}^{\infty} h_n^{(n)}(a_1, a_2, \ldots, a_n) h_{k+n-1}^{(2)}(e_1, e_2) z^n,
$$

which is the left hand side of (1.3). On the other hand, since

$$
f(e_1) = \frac{1}{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n},
$$

we have that

$$
\delta_{e_1 e_2} f(e_1) = \frac{1}{e_1 - e_2} \left(\frac{1}{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n} \frac{1}{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n} \right) \sum_{n=0}^{\infty} S_n(-A) \frac{e_2^n - e_1^n}{e_1 - e_2} z^n

= \frac{1}{e_1 - e_2} \left(\frac{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n} \frac{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n} \right) \sum_{n=0}^{\infty} S_n(-A) \left(e_2^n h_{n-1}^{(2)}(e_1, e_2) \right) z^n

= \frac{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n} \frac{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n} \sum_{n=0}^{\infty} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1, e_2) - e_2^n h_{n-1}^{(2)}(e_1, e_2) \right] z^n

= \frac{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n} \frac{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n}{\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n} \sum_{n=0}^{\infty} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1, e_2) - e_2^n h_{n-1}^{(2)}(e_1, e_2) \right] z^n.
$$

By Proposition 1, it follows that

$$
\delta_{e_1 e_2}^k f(e_1) = h_{k-1}^{(2)}(e_1, e_2) f(e_1) + e_2^k \delta_{e_1 e_2} f(e_1)

= h_{k-1}^{(2)}(e_1, e_2) - e_2^k \sum_{n=0}^{\infty} S_n(-A) h_{n-1}^{(2)}(e_1, e_2) z^n

= \sum_{n=0}^{\infty} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1, e_2) - e_2^n h_{n-1}^{(2)}(e_1, e_2) \right] z^n

= \left(\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n \right) \left(\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n \right) \sum_{n=0}^{\infty} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1, e_2) - e_2^n h_{n-1}^{(2)}(e_1, e_2) \right] z^n
$$
Hence, we have that

\[\delta_{e_1 e_2}^k f (e_1) = \sum_{n=0}^{k-1} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1 + e_2) - e_2^k h_{n-1}^{(2)}(e_1, e_2) \right] z^n \]

\[+ \sum_{n=k+1}^{\infty} S_n(-A) \left[e_2^n h_{k-1}^{(2)}(e_1 + e_2) - e_2^k h_{n-1}^{(2)}(e_1, e_2) \right] z^n \]

\[= \sum_{n=0}^{k-1} S_n(-A) e_1^n z^n + \sum_{n=k+1}^{\infty} S_n(-A) e_2^n z^n \]

This completes the proof.

If \(k = 1 \) and \(A = \{a_1, a_2\} \), the following Lemma holds:

Lemma 1. Given two alphabets \(E = \{e_1, e_2\} \) and \(A = \{a_1, a_2\} \), then

\[\sum_{n=0}^{\infty} h_n^{(2)}(a_1, a_2) h_n^{(2)}(e_1, e_2) z^n = \frac{1 - a_1 a_2 e_1 e_2 z^2}{\left(\sum_{n=0}^{\infty} S_n(-A) e_1^n z^n \right) \left(\sum_{n=0}^{\infty} S_n(-A) e_2^n z^n \right)}. \] (1.4)

Definition 4. Let \(A = \left\{ 1, 1, \ldots, 1 \right\} \), we have

\[S_k(-n) = (-1)^k \binom{n}{k} \text{ and } S_k(n) = \binom{n + k - 1}{k} \] (1.5)

2. THE HADAMARD PRODUCT

In this section, we show the efficiency of the proposed method by determining the Hadamard product. In fact, by taking \(E = 0 \) in (1.1), we obtain

\[\sum_{n=0}^{\infty} S_n(A) z^n = \frac{1}{\prod_{a \in A} (1 - a z)}. \] (2.1)

For the special case where \(a_1 = a_2 = 1 \) in (2.1), we have

\[\sum_{n=0}^{\infty} (n + 1) z^n = \frac{1}{(1 - z)^2}, \] (2.2)
which is found in [5].

By replacing \(z\) by \(e_1z\) in (2.2), we get

\[
\sum_{n=0}^{\infty} (n + 1)e_1^n z^n = \frac{1}{(1 - e_1z)^2}.
\] (2.3)

Using Theorem 1 with the action of the operator \(\delta_{e_1e_2}\) on both sides of the identity (2.3) one can obtain

\[
\sum_{n=0}^{\infty} (n + 1)h^{(2)}_n(e_1, e_2)z^n = \frac{1 - e_1e_2z^2}{(1 - e_1z)^2(1 - e_2z)^2}.
\] (2.4)

By taking \(e_1 = 1\) and \(e_2 = 1\), we have

\[
\sum_{n=0}^{\infty} (n^2 + 2n + 1)z^n = \frac{1 + z}{(1 - z)^3}.
\] (2.5)

On the other hand, using formula (1.4) with the action of the operator \(\delta_{e_1e_2}\) on both sides of (2.5), where replacing \(z\) by \(e_1z\) leads to

\[
\sum_{n=0}^{\infty} (n + 1)^2h^{(2)}_n(e_1, e_2)z^n = \delta_{e_1e_2} \frac{1}{(1 - e_1z)^3} + z \times \delta_{e_1e_2} \frac{e_1}{(1 - e_1z)^3}.
\] (2.6)

By using formulas (1.2), (1.4) and (1.6), it follows that

\[
\delta_{e_1e_2} \frac{e_1}{(1 - e_1z)^3} = \frac{1 - e_1e_2z^2}{(1 - e_1z)^3(1 - e_2z)^3} \sum_{n=0}^{\infty} \left(-1 \right)^{n+2} C_3^{n+2} h^{(2)}_n(e_1, e_2)z^n.
\] (2.7)

\[
\delta_{e_1e_2} \frac{e_1}{(1 - e_1z)^3} = \frac{1 - e_1e_2z^2}{(1 - e_1z)^3(1 - e_2z)^3} \sum_{n=0}^{\infty} \left(-1 \right)^{n+3} C_3^{n+3} h^{(2)}_n(e_1, e_2)z^n.
\] (2.8)

Notice that, for \(e_1 = 1\) and \(e_2 = 1\), we have

\[
\sum_{n=0}^{\infty} (n^3 + 3n^2 + 3n + 1)z^n = \frac{1 + 4z + z^2}{(1 - z)^4}.
\] (6.9)

Using the same procedure, we obtain the following new generating functions:

\[
\sum_{n=0}^{\infty} (n^2 + 2n + 1)^2z^n = \frac{1 + 11z + 11z^2 + z^3}{(1 - z)^5},
\]
\[
\sum_{n=0}^{\infty} (n^2 + 2n + 1)^2 (n+1)z^n = \frac{1 + 26z + 66z^2 + 26z^3 + z^4}{(1 - z)^6},
\]
\[
\sum_{n=0}^{\infty} (n^3 + 3n^2 + 3n + 1)^2 z^n = \frac{1 + 57z + 302z^2 + 302z^3 + 57z^4 + z^5}{(1 - z)^7},
\]
\[
\sum_{n=0}^{\infty} (n^3 + 3n^2 + 3n + 1)^2 (n+1)z^n = \frac{1 + 120z + 1191z^2 + 2416z^3 + 1191z^4 + 120z^5 + z^6}{(1 - z)^8},
\]
\[
\sum_{n=0}^{\infty} (n^3 + 3n^2 + 3n + 1)^2 (n+1)^2 z^n = \frac{1 + 247z + 4293z^2 + 15619z^3 + 15619z^4 + 4293z^5 + 247z^6 + z^7}{(1 - z)^9}.
\]

REFERENCES

