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ABSTRACT: The uniqueness of positive solution to the elliptic model

∆u+ u[a+ g(u, v)] = 0 in Ω,

∆v + v[a+ h(u, v)] = 0 in Ω,

u = v = 0 on ∂Ω,

were investigated.
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1. INTRODUCTION

A lot of research has been focused on reaction-diffusion equations modeling various

systems in mathematical biology, especially the elliptic steady states of competitive

and predator-prey interacting processes with various boundary conditions. In ear-

lier literature, investigations into mathematical biology models were concerned with

studying those with homogeneous Neumann boundary conditions. Later on, the more

important Dirichlet problems, which allow flux across the boundary, became the sub-

ject of study.

Suppose two species of animals, rabbits and squirrels for instance, are competing

in a bounded domain Ω. Let u(x, t) and v(x, t) be densities of the two habitats in

the place x of Ω at time t. Then we have the following biological interpretation of

terms.

(A) The partial derivatives ut(x, t) and vt(x, t) mean the rate of change of densities

with respect to time t.
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(B) The laplacians ∆u(x, t) and ∆v(x, t) stand for the diffusion or migration

rates.

(C) The rates of self-reproduction of each species of animals are expressed as

multiples of some positive constants a, d and current densities u(x, t), v(x, t), i.e.

au(x, t) and dv(x, t) which will increase the rate of change of densities in (A), where

a > 0, d > 0 are called the self-reproduction constants.

(D) The rates of self-limitation of each species of animals are multiples of some pos-

itive constants b, f and the frequency of encounters among themselves u2(x, t), v2(x, t),

i.e. bu2(x, t) and fv2(x, t) which will decrease the rate of change of densities in (A),

where b > 0, f > 0 are called the self-limitation constants.

(E) The rates of competition of each species of animals are multiples of some

positive constants c, e and the frequency of encounters of each species with the other

u(x, t)v(x, t), i.e. cu(x, t)v(x, t) and eu(x, t)v(x, t) which will decrease the rate of

change of densities in (A), where c > 0, e > 0 are called the competition constants.

(F ) We assume that none of the species of animals is staying on the boundary of

Ω.

Combining all those together, we have the dynamic model











ut(x, t) = ∆u(x, t) + au(x, t)− bu2(x, t)− cu(x, t)v(x, t)

vt(x, t) = ∆v(x, t) + dv(x, t)− fv2(x, t)− eu(x, t)v(x, t)
in Ω× [0,∞),

u(x, t) = v(x, t) = 0 for x ∈ ∂Ω,

or equivalently,











ut(x, t) = ∆u(x, t) + u(x, t)(a− bu(x, t)− cv(x, t))

vt(x, t) = ∆v(x, t) + v(x, t)(d− fv(x, t)− eu(x, t))
in Ω× [0,∞),

u(x, t) = v(x, t) = 0 for x ∈ ∂Ω,

Here we are interested in the time independent, positive solutions, i.e. the positive

solutions u(x), v(x) of











∆u(x) + u(x)(a− bu(x)− cv(x)) = 0

∆v(x) + v(x)(d− fv(x)− eu(x)) = 0
in Ω,

u|∂Ω = v|∂Ω = 0,

(1)

which are called the coexistence state or the steady state. The coexistence state is

the positive density solution depending only on the spatial variable x, not on the time

variable t, and so its existence means the two species of animals can live peacefully

and forever.
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A lot of work about the existence and uniqueness of the coexistence state of the

above steady state model has already been done during the last decade.(See [2], [3],

[4], [6], [7], [14], [15].)

In [4], Cosner and Lazer established a sufficient and necessary conditions for the

existence of positive solution to the competing system.

The following is their result:

Theorem 1.1. In order that there exist positive smooth functions u and v in Ω

satisfying (1) with a = d, it is necessary and sufficient that one of the following three

sets of conditions hold, where λ1 is as described in the Lemma 2.2.

(1)a > λ1, b > e, c < f

(2)a > λ1, b = e, c = f

(3)a > λ1, b < e, c > f

Furthermore, in case (1), there is a unique positive solution u = f−c

bf−ce
θa, v = b−e

bf−ce
θa.

Biologically, the Theorem 1.1 implies that they can coexist peacefully if their

reproduction rates are large enough and their self-limitation and competition rates

are balanced each other.

In this paper we study rather general types of the system. We are concerned with

the existence and uniqueness of positive coexistence when the relative growth rates

are nonlinear, more precisely, the existence and uniqueness of a positive steady state

of










∆u+ u[a+ g(u, v)] = 0

∆v + v[a+ h(u, v)] = 0
in Ω,

u|∂Ω = v|∂Ω = 0,

(2)

where a is a positive constant, g, h ∈ C1 are such that gu < 0, gv < 0, hu < 0, hv < 0,

there exist constants c0 > 0, c1 > 0 such that a + g(u, 0) ≤ 0 for u ≥ c0 and

a + h(0, v) ≤ 0 for v ≥ c1, and g(0, 0) = h(0, 0) = 0, Ω is a bounded domain in Rn

and u, v are densities of the two competitive species.

In [8], Kang established the following sufficient conditions for the existence of

positive solution to (2).

Theorem 1.2. Suppose one of the following three sets of conditions holds.

(1)a > λ1, inf(gu) < inf(hu), inf(gv) > inf(hv)

(2)a > λ1, inf(gu) = inf(hu), inf(gv) = inf(hv)

(3)a > λ1, inf(gu) > inf(hu), inf(gv) < inf(hv)

Then (2) has a positive smooth solution.
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In this paper, we focus on the uniqueness of positive solution to (2) in the case

(1) of the Theorem 1.2 with some other additional conditions.

2. PRELIMINARIES

In this section, we state some preliminary results which will be useful for our later

arguments.

Definition 2.1. (upper and lower solutions)

{

∆u+ f(x, u) = 0 in Ω,

u|∂Ω = 0,
(3)

where f ∈ Cα(Ω̄×R) and Ω is a bounded domain in Rn.

(A) A function ū ∈ C2,α(Ω̄) satisfying

{

∆ū+ f(x, ū) ≤ 0 in Ω,

ū|∂Ω ≥ 0,

is called an upper solution to (3).

(B) A function u ∈ C2,α(Ω̄) satisfying

{

∆u+ f(x, u) ≥ 0 in Ω,

u|∂Ω ≤ 0

is called a lower solution to (3).

Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄× R) and let ū, u ∈ C2,α(Ω̄) be respectively, upper

and lower solutions to (3) which satisfy u(x) ≤ ū(x), x ∈ Ω̄. Then (3) has a solution

u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤ ū(x), x ∈ Ω̄.

We also need some information on the solutions of the following logistic equations.

Lemma 2.2. (Established in [14])

Consider
{

∆u+ uf(u) = 0 in Ω,

u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that f(u) ≤ 0

for u ≥ c0 and Ω is a bounded domain in Rn.

If f(0) > λ1, then the above equation has a unique positive solution, where λ1 is

the first eigenvalue of −∆ with homogeneous boundary conditions whose corresponding

eigenfunction is denoted by φ1. We denote this unique positive solution as θf .
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The most important property of this positive solution is that θf is increasing as

f is increasing.

We specifically note that for a > λ1, the unique positive solution of

{

∆u+ u(a− u) = 0 in Ω,

u|∂Ω = 0, u > 0,

is denoted by ωa ≡ θa−x. Hence, θa is increasing as a > 0 is increasing.

3. MAIN UNIQUENESS RESULT

Theorem 3.1. Suppose a > λ1, inf(gu) < inf(hu), inf(gv) > inf(hv) and sup(gu) <

sup(hu), sup(gv) > sup(hv).

If

4 sup(gu) sup(hv) >
[sup(gv)− sup(hv)][inf(gu) inf(hv)− inf(gv) inf(hu)]

[inf(hu)− inf(gu)][sup(gu) sup(hv)− sup(gv) sup(hu)]
[inf(gv)]

2

+
[sup(hu)− sup(gu)][inf(gu) inf(hv)− inf(gv) inf(hu)]

[inf(gv)− inf(hv)][sup(gu) sup(hv)− sup(gv) sup(hu)]
[inf(hu)]

2+2 inf(gv) inf(hu),

then (2) has a unique positive smooth solution.

Proof. By the Theorem 1.1, both of the following systems

∆u+ u[a− (− inf(gu))u− (− inf(gv))v] = 0

∆v + v[a− (− inf(hu))u− (− inf(hv))v] = 0
in Ω,

u|∂Ω = v|∂Ω = 0.

(4)

and

∆u+ u[a− (− sup(gu))u− (− sup(gv))v] = 0

∆v + v[a− (− sup(hu))u− (− sup(hv))v] = 0
in Ω,

u|∂Ω = v|∂Ω = 0.

(5)

have unique positive solutions.

Suppose (u, v) is a positive solution to (2). Then by the Mean Value Theorem,

∆u+ u[a− (− inf(gu))u− (− inf(gv))v]

= ∆u+ u[a+ inf(gu)u+ inf(gv)v]

≤ ∆u+ u[a+ g(u, v)− g(0, v) + g(0, v)− g(0, 0)]

= ∆u+ u[a+ g(u, v)]

= 0,
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and
∆v + v[a− (− inf(hu))u− (− inf(hv))v]

= ∆v + v[a+ inf(hu)u+ inf(hv)v]

≤ ∆v + v[a+ h(u, v)− h(0, v) + h(0, v)− h(0, 0)]

= ∆v + v[a+ h(u, v)]

= 0.

Hence, (u, v) is a supersolution to (4).

Since a− λ1 > 0, for sufficiently small ǫ > 0,

∆(ǫφ1) + ǫφ1[a− (− inf(gu))ǫφ1 − (− inf(gv))ǫφ1]

= −ǫλ1φ1 + ǫφ1[a− (− inf(gu))ǫφ1 − (− inf(gv))ǫφ1]

= ǫφ1[−λ1 + a− (− inf(gu))ǫφ1 − (− inf(gv))ǫφ1]

> 0,

and
∆(ǫφ1) + ǫφ1[a− (− inf(hu))ǫφ1 − (− inf(hv))ǫφ1]

= −ǫλ1φ1 + ǫφ1[a− (− inf(hu))ǫφ1 − (− inf(hv))ǫφ1]

= ǫφ1[−λ1 + a− (− inf(hu))ǫφ1 − (− inf(hv))ǫφ1]

> 0,

so (ǫφ1, ǫφ1) is a subsolution to (4).

But, by the uniqueness of positive solution to (4) and the Lemma 2.1, we have

inf(gv)− inf(hv)

inf(gu) inf(hv)− inf(gv) inf(hu)
θa ≤ u,

inf(hu)− inf(gu)

inf(gu) inf(hv)− inf(gv) inf(hu)
θa ≤ v.

(6)

By the Mean Value Theorem again,

∆u+ u[a− (− sup(gu))u− (− sup(gv))v]

= ∆u+ u[a+ sup(gu)u+ sup(gv)v]

≥ ∆u+ u[a+ g(u, v)− g(0, v) + g(0, v)− g(0, 0)]

= ∆u+ u[a+ g(u, v)]

= 0,

and
∆v + v[a− (− sup(hu))u− (− sup(hv))v]

= ∆v + v[a+ sup(hu)u+ sup(hv)v]

≥ ∆v + v[a+ h(u, v)− h(0, v) + h(0, v)− h(0, 0)]

= ∆v + v[a+ h(u, v)]

= 0.

Hence, (u, v) is a subsolution to (5).
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Clearly, for sufficiently large constant M > 0, (M,M) is a supersolution to (5).

So, by the uniqueness of positive solution to (5) and the Lemma 2.1 again, we

have

u ≤
sup(gv)− sup(hv)

sup(gu) sup(hv)− sup(gv) sup(hu)
θa,

v ≤
sup(hu)− sup(gu)

sup(gu) sup(hv)− sup(gv) sup(hu)
θa.

(7)

By (6) and (7), we conclude that for any positive solution (u, v) to (2),

inf(gv)− inf(hv)

inf(gu) inf(hv)− inf(gv) inf(hu)
θa ≤ u ≤

sup(gv)− sup(hv)

sup(gu) sup(hv)− sup(gv) sup(hu)
θa

inf(hu)− inf(gu)

inf(gu) inf(hv)− inf(gv) inf(hu)
θa ≤ v ≤

sup(hu)− sup(gu)

sup(gu) sup(hv)− sup(gv) sup(hu)
θa.

(8)

Suppose (u1, v1) and (u2, v2) are positive solutions to (2).

Let p = u1 − u2 and q = v1 − v2. Then

∆p+ (a+ g(u1, v1))p = ∆u1 −∆u2 + (a+ g(u1, v1))(u1 − u2)

= −∆u2 − (a+ g(u1, v1))u2

= −∆u2 − u2(a+ g(u2, v2)− g(u2, v2) + g(u1, v1))

= −u2(−g(u2, v2) + g(u1, v1))

= −u2(−g(u2, v2) + g(u1, v2)− g(u1, v2) + g(u1, v1))

= −u2(
∂g(x̃, v2)

∂u
p+

∂g(u1, x̄)

∂v
q) in Ω,

where x̃, x̄ are from Mean Value Theorem depending on u1, u2, v1, v2. Hence,

∆p+ (a+ g(u1, v1))p+ u2(p
∂g(x̃, v2)

∂u
+ q

∂g(u1, x̄)

∂v
) = 0 in Ω. (9)

Similarly, we can get

∆q + (a+ h(u2, v2))q + v1(p
∂h(ỹ, v1)

∂u
+ q

∂h(u2, ȳ)

∂v
) = 0 in Ω, (10)

where ỹ, ȳ are from Mean Value Theorem depending on u1, u2, v1, v2. Since λ1(−a−

g(u1, v1)) = 0, by the Variational Characterization of the first eigenvalue we obtain
∫

Ω

z(−∆z − (a+ g(u1, v1))z)dx ≥ 0 (11)

for any z ∈ C2(Ω̄) and z|∂Ω = 0. The same argument shows that
∫

Ω

w(−∆w − (a+ h(u2, v2))w)dx ≥ 0 (12)

for any w ∈ C2(Ω̄) and w|∂Ω = 0. From (9) and (10) we have










−p∆p− (a+ g(u1, v1))p
2 − u2p(p

∂g(x̃, v2)

∂u
+ q

∂g(u1, x̄)

∂v
) = 0

−q∆q − (a+ h(u2, v2))q
2 − v1q(p

∂h(ỹ, v1)

∂u
+ q

∂h(u2, ȳ)

∂v
) = 0

in Ω.
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Using (11) and (12), we conclude

∫

Ω

[−u2p(p
∂g(x̃, v2)

∂u
+ q

∂g(u1, x̄)

∂v
)− v1q(p

∂h(ỹ, v1)

∂u
+ q

∂h(u2, ȳ)

∂v
)] ≤ 0.

Hence,

∫

Ω

[−u2

∂g(x̃, v2)

∂u
p2 + (−u2

∂g(u1, x̄)

∂v
− v1

∂h(ỹ, v1)

∂u
)pq − v1

∂h(u2, ȳ)

∂v
q2] ≤ 0.

Therefore, p ≡ q ≡ 0 if we can show that

(u2

∂g(u1, x̄)

∂v
+ v1

∂h(ỹ, v1)

∂u
)2 − 4u2v1

∂g(x̃, v2)

∂u

∂h(u2, ȳ)

∂v
< 0 in Ω,

which is true if

u2
2(
∂g(u1, x̄)

∂v
)2 + v21(

∂h(ỹ, v1)

∂u
)2 + 2u2v1

∂g(u1, x̄)

∂v

∂h(ỹ, v1)

∂u

− 4u2v1
∂g(x̃, v2)

∂u

∂h(u2, ȳ)

∂v
< 0 in Ω,

i.e.,

4u2v1
∂g(x̃, v2)

∂u

∂h(u2, ȳ)

∂v
> u2

2(
∂g(u1, x̄)

∂v
)2 + v21(

∂h(ỹ, v1)

∂u
)2

+ 2u2v1
∂g(u1, x̄)

∂v

∂h(ỹ, v1)

∂u
in Ω,

or

4
∂g(x̃, v2)

∂u

∂h(u2, ȳ)

∂v
>

u2

v1
(
∂g(u1, x̄)

∂v
)2 +

v1

u2

(
∂h(ỹ, v1)

∂u
)2

+ 2
∂g(u1, x̄)

∂v

∂h(ỹ, v1)

∂u
in Ω.

This is the case from the hypothesis of the theorem and (8), and so the uniqueness is

proved.

REFERENCES

[1] S.W. Ali and C. Cosner, On the uniqueness of the positive steady state for Lotka-

Volterra Models with diffusion, Journal of Mathematical Analysis and Applica-

tion, 168 (1992), 329-341.

[2] R.S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka

competition model with diffusion, Houston Journal of Mathematics, 13 (1987),

337-352.



Positive Solutions to an Elliptic Model 583

[3] R.S. Cantrell and C. Cosner, On the uniqueness and stability of positive solutions

in the Volterra-Lotka competition model with diffusion, Houston J. Math., 15

(1989) 341-361.

[4] C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka com-

petition model with diffusion, Siam J. Appl. Math., 44 (1984), 1112-1132.

[5] D. Dunninger, Lecture Note for Applied Analysis, Michigan State University.

[6] C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the

Lotka-Volterra competition model, Comm Pure and Appl. Math., XVL2, No. 12

(1994), 1571-1594.

[7] J. L.-Gomez and R. Pardo, Existence and uniqueness for some competition mod-

els with diffusion, C.R. Acad. Sci. Paris, Ser. I Math., 313 (1991), 933-938.

[8] J. Kang, Positive equibibrium solutions to general population model, Interna-

tional Journal of Pure and Applied Mathematics, 85, No. 6 (2013), 1009-1019.

[9] J. Kang and Y. Oh, A sufficient condition for the uniqueness of positive steady

state to a reaction diffusion system, Journal of Korean Mathematical Society,

39, No. 39 (2002), 377-385.

[10] J. Kang and Y. Oh, Uniqueness of coexistence state of general competition

model for several competing species, Kyungpook Mathematical Journal, 42, No.

2 (2002), 391-398.

[11] J. Kang, Y. Oh, and J. Lee, The existence, nonexistence and uniqueness of

global positive coexistence of a nonlinear elliptic biological interacting model,

Kangweon-Kyungki Math. Jour., 12, No. 1 (2004), 77-90.

[12] P. Korman and A. Leung, A general monotone scheme for elliptic systems with

applications to ecological models, Proceedings of the Royal Society of Edinburgh,

102A (1986), 315-325

[13] P. Korman and A. Leung, On the existence and uniqueness of positive steady

states in the Volterra-Lotka ecological models with diffusion, Applicable Analysis,

26, 145-160.

[14] L. Li and R. Logan, Positive solutions to general elliptic competition models,

Differential and Integral Equations, 4 (1991), 817-834.



584 J.H. Kang

[15] A. Leung, Equilibria and stabilities for competing-species, reaction-diffusion

equations with Dirichlet boundary data, J. Math. Anal. Appl., 73 (1980), 204-

218.


