FIBONACCI Q-TYPE MATRICES AND PROPERTIES OF A CLASS OF NUMBERS RELATED TO THE FIBONACCI, LUCAS AND PELL NUMBERS

Fozi M. Dannan
Department of Mathematics
Faculty of Science
Qatar University
Doha, QATAR
fmdannan@qu.edu.qa

Communicated by D. Bainov

ABSTRACT: A class of numbers that contains the Fibonacci, Lucas and Pell numbers is investigated, and some properties are obtained. Fibonacci Q-type matrices are constructed as a tool to get many properties for Fibonacci and Pell numbers.

AMS (MOS) Subject Classification. 11B39, 11C20

1. INTRODUCTION

In spite of many articles and books that have been published on the Fibonacci, Lucas and Pell numbers and their applications Bong [1], Dubner and Keller [2], Hoggatt [4], Horadam [6], Horadam [7], Philipou [8], Sloane and Plouffe [9], Vorob’ev [10], these numbers are still an interesting subject for investigation. In this article we introduce interesting properties satisfied by a large class of Fibonacci type numbers. Let us note that this class has been studied extensively by Horadam [6] and [7], where several properties has been obtained.

The numbers we are going to consider satisfy the following recurrence relations:

\[U(n + 2, u_1, u_2, a, b) = aU(n + 1, u_1, u_2, a, b) + bU(n, u_1, u_2, a, b) \] , \hspace{1cm} (1)

where

\[U(1, u_1, u_2, a, b) = u_1 , \quad U(2, u_1, u_2, a, b) = u_2 , \quad ab \neq 0 \] , \hspace{1cm} (2)

Received April 1, 2004
\(n \geq 2 \) is an integer and \(u_1, u_2, a, b \) are real. We observe that:

(i) The Fibonacci numbers \(F(n) \) defined by \(F(n+2) = F(n+1) + F(n) \) and \(F(1) = F(2) = 1 \) satisfy

\[
U(n, 1, 1, 1, 1) = F(n) .
\] (3)

(ii) The Lucas numbers \(L(n) \) defined by \(L(n+2) = L(n+1) + L(n) \) and \(L(1) = 1, \ L(2) = 3 \) satisfy

\[
U(n, 1, 3, 1, 1) = L(n) ,
\] (4)

(iii) The Pell numbers \(P(n) \) defined by \(P(n+2) = P(n+1) + P(n) \) and \(P(1) = 1, P(2) = 2 \) satisfy

\[
U(n, 1, 2, 2, 1) = P(n) .
\] (5)

(iv) The numbers \(R(a, n) \) defined by \(R(a, n+2) = aR(a, n+1) + R(a, n) \), where \(R(a, 0) = 0, R(a, 1) = 1 \) and \(a \geq 1 \) is an integer, satisfy

\[
U(n, 1, a, 1) = R(a, n) .
\] (6)

This class of numbers has been introduced by Entringer and Slater [3], while investigating the problem of information dissemination through telegraphs. In 1986 Bong [1] obtained several interesting properties for \(R(a, n) \).

In Sections 2 and 3 we introduce interesting properties that satisfied by \(U(n, u_1, u_2, a, b) \) and consequently by the Fibonacci, Lucas and Pell numbers. Section 5 deals with solutions of quadratic matrix difference equation and a special class of these solutions that leads to the definitions Q-type matrices.

In what follows, for simplicity, we write \(U(n) \) instead of \(U(n, u_1, u_2, a, b) \) when the appearance of the arguments is not necessary.

2. PROPERTIES OF \(U(n) \)

The characteristic equation

\[
\lambda^2 - a\lambda - b = 0
\] (7)

of (1) has two roots

\[
\lambda_1 = \frac{a + \varepsilon\sqrt{\Delta}}{2} , \quad \lambda_2 = \frac{a - \varepsilon\sqrt{\Delta}}{2} ,
\] (8)

where \(\Delta = |a^2 + 4b| \), \(\varepsilon = 1 \) when \(a^2 + 4b > 0 \) and \(\varepsilon = \sqrt{-1} \) for \(a^2 + 4b < 0 \).
In the case when (7) has equal roots, then \(b = -\frac{a^2}{4} \) and \(\lambda_1 = \lambda_2 = \frac{a}{2} \). The corresponding solution of Eq. (1) will be denoted by \(D(n, p_1, p_2, a) \), where we have

\[
D(n + 2, p_1, p_2, a) = aD(n + 1, p_1, p_2, a) - \frac{a^2}{4}D(n, p_1, p_2, a)
\]

(9)

and

\[
D(1, p_1, p_2, a) = p_1, \quad D(2, p_1, p_2, a) = p_2.
\]

(10)

For simplicity we write \(D(n) \) instead of \(D(n, p_1, p_2, a) \) when the appearance of the arguments is not necessary.

Lemma 1. Assume that \(\lambda_1 \neq \lambda_2 \), then for \(\alpha, \beta, \gamma, \delta \) and \(k \in \mathbb{R} \), the following relations hold true:

\[
U(n, \alpha u_1, \alpha u_2, a, b) = \alpha U(n, u_1, u_2, a, b),
\]

(11)

\[
U(n, u_1, ku_2, ka, k^2b) = k^{n-1}U(n, u_1, u_2, a, b),
\]

(12)

\[
U(n, \alpha v_1 + \beta v_2, \gamma w_1 + \delta w_2, a, b) = U(n, \alpha v_1, \gamma w_1, a, b) + U(n, \beta v_2, \delta w_2, a, b),
\]

(13)

and

\[
U(n, u_1, u_2, a, b) = bu_1 U(n-2, 1, a, a, b) U(n-1, 1, a, a, b).
\]

(14)

Proof. The solution of (1) that satisfies \(u_1 = U(1) \) and \(u_2 = U(2) \) can be obtained by determining \(c_1 \) and \(c_2 \) in the solution

\[
U(n) = c_1 \lambda_1^n + c_2 \lambda_2^n.
\]

(15)

Therefore, we get

\[
U(n) = \frac{u_2 - \lambda_2 u_1}{\lambda_1 - \lambda_2} \lambda_1^{n-1} - \frac{u_2 - \lambda_1 u_1}{\lambda_1 - \lambda_2} \lambda_2^{n-1},
\]

(16)

or

\[
U(n, u_1, u_2, a, b) = \frac{1}{\varepsilon \sqrt{\Delta}}[bu_1(\lambda_1^{n-2} - \lambda_2^{n-2}) + u_2(\lambda_1^{n-1} - \lambda_2^{n-1})].
\]

(17)
Since \(U(n, u_1, u_2, a, b) \) is linear and homogeneous function with respect to \(u_1 \) and \(u_2 \), the relations (11) and (13) follow directly. If we notice that \(\lambda_1 = \lambda_1(a, b) \) and \(\lambda_2 = \lambda_2(a, b) \) satisfy
\[
\lambda_i(ka, k^2b) = k\lambda_i(a, b) , \quad i = 1, 2 , \tag{18}
\]
then from Eq.(17) we obtain
\[
U(n, ku_2, ka, k^2b) = \frac{1}{\varepsilon k\sqrt{\Delta}}[k^2u_1k^{n-2}(\lambda_1^{n-2} - \lambda_2^{n-2}) + ku_2k^{n-1}(\lambda_1^{n-1} - \lambda_2^{n-1})] ,
\]
and (12) follows directly.

From (7) we infer that \(Q(p) = \lambda_1^p - \lambda_2^p \) satisfies \(Q(p + 2) = aQ(p + 1) + bQ(p) \) with \(Q(1) = \varepsilon\sqrt{\Delta} \) and \(Q(1) = a\varepsilon\sqrt{\Delta} \). Therefore
\[
Q(p) = U(p, \varepsilon\sqrt{\Delta}, a\varepsilon\sqrt{\Delta}, a, b)
\]
and (11) implies that
\[
Q(p) = \varepsilon\sqrt{\Delta}U(p, 1, a, a, b) , \tag{19}
\]
and we obtain (14) by using (19) and noticing that
\[
U(n, u_1, u_2, a, b) = \frac{1}{\varepsilon\sqrt{\Delta}}[bu_1Q(n-2) + u_2Q(n-1)] . \tag{20}
\]

In what follows we introduce the main properties of \(U(n) \).

Theorem 1. Assume that \(\lambda_1 \neq \lambda_2 \) and \(n > m \geq 1 \). Then the following relations hold true:
\[
U(n + m + 1)U(n - m) - U(n + m)U(n - m + 1) = (-b)^{n-m-1}(bu_1^2 + au_1u_2 - u_2^2)V(2m) \tag{21}
\]
and
\[
U(n + k + 1)U(n - k) - U(n + 1)U(n) = \frac{(bu_1^2 + au_1u_2 - u_2^2)}{a^2 + 4b}(-b)^{n-k-1}[-a(-b)^k + V(2k + 2) + bV(2k)] , \tag{22}
\]
where
\[
V(n) = U(n, 1, a, a, b) , \quad (n > k) . \tag{23}
\]
Proof. From (15) we have

\[
U(n + m + 1)U(n - m) - U(n + m)U(n - m + 1) = (c_1\lambda_1^{n+m+1} + c_2\lambda_2^{n+m+1}) (c_1\lambda_1^{n-m} + c_2\lambda_2^{n-m}) - (c_1\lambda_1^{n+m} + c_2\lambda_2^{n+m}) (c_1\lambda_1^{n-m+1} + c_2\lambda_2^{n-m+1}) = c_1c_2(\lambda_1\lambda_2)^{n-m} (\lambda_1 - \lambda_2) (\lambda_1^{2m} - \lambda_2^{2m}) .
\] (24)

If we notice that

\[
\lambda_1\lambda_2 = -b , \lambda_1 - \lambda_2 = \varepsilon\sqrt{\Delta} , \lambda_1^{2m} - \lambda_2^{2m} = Q(2m)
\]

and

\[
c_1c_2 = \frac{(bu_1^2 + au_1u_2 - u_2^2)}{\lambda_1\lambda_2(\lambda_1 - \lambda_2)^2} ,
\] (25)

it follows from (24) that

\[
U(n + m + 1)U(n - m) - U(n + m)U(n - m + 1) = \frac{(-b)^{n-m-1}}{\varepsilon\sqrt{\Delta}} (bu_1^2 + au_1u_2 - u_2^2) U(2m, \varepsilon\sqrt{\Delta}, a\varepsilon\sqrt{\Delta}, a, b) .
\]

Applying (11) we conclude (21).

From (21), we write in succession

\[
U(n + 2)U(n - 1) - U(n + 1)U(n) = h(-b)^{n-2}V(2)
\]

\[
U(n + 3)U(n - 2) - U(n + 2)U(n - 1) = h(-b)^{n-3}V(4)
\]

\[...
\]

\[
U(n + k + 1)U(n - k) - U(n + k)U(n - k + 1) = h(-b)^{n-k-1}V(2k) ,
\]

where \(h = (bu_1^2 + au_1u_2 - u_2^2) \) and \(V(n) \) is defined by (23). Summing these, we obtain

\[
U(n + k + 1)U(n - k) - U(n + 1)U(n) = (bu_1^2 + au_1u_2 - u_2^2)G ,
\] (26)

where

\[
G = \sum_{i=1}^{k} (-b)^{n-i-1}V(2i) = (-b)^{n-1} \sum_{i=1}^{k} (-b)^{-i} \frac{\lambda_1^{2i} - \lambda_2^{2i}}{\lambda_1 - \lambda_2} .
\]

Since

\[
\sum_{i=1}^{k} (-\frac{\lambda_1^2}{b})^i = -\frac{\lambda_1^2}{b} \cdot \frac{1 - (-\frac{\lambda_1^2}{b})^k}{1 + \frac{\lambda_1^2}{b}} ,
\]

we get

\[
G = \frac{(-b)^{n-1}}{\lambda_1 - \lambda_2} \left[-\lambda_1^2 \left(\frac{1 - q_1}{b + \lambda_1^2} \right) + \lambda_2^2 \left(\frac{1 - q_2}{b + \lambda_2^2} \right) \right] ,
\]
where \(q_1 = (-\frac{\lambda^2}{b})^k \) and \(q_2 = (-\frac{\lambda^2}{b})^k \). Hence

\[
G = \frac{(-b)^{n-1}}{(\lambda_1 - \lambda_2) (b + \lambda_1^2) (b + \lambda_2^2)} \left[-\lambda_1^2 (b + \lambda_1^2) (1 - q_1) + \lambda_2^2 (b + \lambda_1^2) (1 - q_2)\right].
\]

If we notice that

\[
(b + \lambda_1^2) (b + \lambda_2^2) = (a\lambda_1 + 2b) (a\lambda_2 + 2b) = a^2b + 4b^2
\]

and

\[
\lambda_2(b + \lambda_2^2) = b\lambda^2 + b^2 = (a\lambda + b)b + b^2 = ab\lambda + 2b^2
\]

for \(\lambda = \lambda_1, \lambda_2 \), then

\[
G = \frac{(-b)^{n-1}}{(a^2 + 4b)(\lambda_1 - \lambda_2)} [\frac{1}{(-b)^k} \left[a(\lambda_1^{2k+1} - \lambda_2^{2k+1}) + 2b(\lambda_1^{2k} - \lambda_2^{2k})\right]]
\]

\[
\frac{(-b)^{n-k-1}}{(a^2 + 4b)} \left[-a(-b)^k + aV(2k + 1) + 2bV(2k)\right]
\]

\[
= \frac{(-b)^{n-k-1}}{(a^2 + 4b)} \left[-a(-b)^k + V(2k + 2) + bV(2k)\right].
\]

The substitution of \(G \) in (26) completes the proof.

Theorem 2. Assume that \(\lambda_1 \neq \lambda_2 \) and \(n > m \geq 2 \). Then the following relations hold true:

\[
U(n + m)U(n - m) - U(n + m - 1)U(n - m + 1) = (-b)^{n-m-1}(bu_1^2 + au_1u_2 - u_2^2)V(2m - 1) \quad (27)
\]

and

\[
U(n + k)U(n - k) - U(n + 1)U(n - 1) = \frac{b(bu_1^2 + au_1u_2 - u_2^2)(-b)^{n-k}}{a^2 + 4b} \times [(a^2 + 2b)(-b)^{k-1} - V(2k + 1) - bV(2k - 1)] \quad (28)
\]

for \(n > k \geq 2 \), where \(V(n) \) is defined by (23).

Proof. Following the steps of the proof of (22), we obtain

\[
U(n + k)U(n - k) - U(n + 1)U(n - 1) = (bu_1^2 + au_1u_2 - u_2^2)H, \quad (29)
\]
But
\[
H = \sum_{i=2}^{k} (-b)^{n-i-1} V(2i - 1).
\]

Therefore
\[
H = \frac{(-b)^{n-1}}{(a^2 + 4b)(\lambda_1 - \lambda_2)} \left[-a(\lambda_1 - \lambda_2) - \frac{1}{(b)^{k-1}}[\alpha(\lambda_1^{2k-1} - \lambda_2^{2k+1}) + \beta(\lambda_1^{2k-2} - \lambda_2^{2k-2})] \right],
\]

where \(r_1 = (-\frac{\lambda_3^2}{\lambda_2})^k \) and \(r_2 = (-\frac{\lambda_3^2}{\lambda_2})^k \). If we notice that
\[
\lambda_3^2(b + \lambda_3^2) = \lambda_1(b\lambda_1^2 + b^2) = \lambda_1(ab\lambda_1 + 2b^2) = (a^2b + 2b^2)\lambda_1 + ab^2
\]
and \(\lambda_3^2(b + \lambda_3^2) = (a^2b + 2b^2)\lambda_2 + ab^2 \), then
\[
H = \frac{(-b)^{n-k+1}}{(a^2 + 4b)} \left[(a^2 + 2b)(-b)^{k-1} - [(a^2 + 2b)V(2k - 1) + abV(2k - 2)] \right].
\]

But
\[
(a^2 + 2b)V(2k - 1) + abV(2k - 2) = 2bV(2k - 1) + aV(2k) = bV(2k - 1) + V(2k + 1).
\]

Therefore
\[
H = \frac{(-b)^{n-k+1}}{(a^2 + 4b)} \left[(a^2 + 2b)(-b)^{k-1} - [V(2k + 1) + bV(2k - 1)] \right].
\]

The substitution of \(H \) in (29) completes the proof of (28). The relation (27) can be proved in a similar way to that of (21).

In the case when the equation (7) has equal roots, we have the following:

Theorem 3. Assume that Eq.(7) has equal roots. Then the following relations hold true:

\[
D(n + m + 1)D(n - m) - D(n + m)D(n - m + 1) = -\frac{m}{2} \left(\frac{a}{2} \right)^{2n-3} (2p_2 - ap_1)^2, \ (n > m \geq 1)
\]

(30)
and
\[D(n + m)D(n - m) - D(n + m - 1)D(n - m + 1) = - \frac{2m - 1}{2} \left(\frac{a}{2} \right)^{2n-4}(2p_2 - ap_1)^2, \quad (n > m \geq 2). \] (31)
where \(D(n) \) is defined by (9) and (10).

Proof. The solution of (9) and (10) can be written as follows:
\[D(n) = \lambda_1^n(c_1 + c_2n), \quad D(1) = p_1, \quad D(2) = p_2, \] (32)
where
\[c_1 = \frac{2p_1 \lambda_1 - p_2}{\lambda_1^2}, \quad c_2 = \frac{p_2 - p_1 \lambda_1}{\lambda_1^2}, \quad \lambda_1 = \frac{a}{2}. \] (33)
Using (32) and (33) we have
\[D(n + m + 1)D(n - m) - D(n + m)D(n - m + 1) = -2mc_2^2\lambda_1^{2n+1}. \]
The relation (30) follows directly, if we notice that
\[c_2^2\lambda_1^{2n+1} = \frac{1}{4}(\frac{a}{2})^{2n-3}(2p_2 - ap_1)^2. \] \(\square \)

Theorem 4. Assume that \(\lambda_1 = \lambda_2 \). Then the following relations hold true:
\[D(n + k + 1)D(n - k) - D(n + 1)D(n) = -\frac{k(k + 1)}{2}\left(\frac{a}{2} \right)^{2n-3}(2p_2 - ap_1)^2, \quad (n > k \geq 1) \] (34)
and
\[D(n + k)D(n - k) - D(n + 1)D(n - 1) = -\frac{k^2 - 1}{2}\left(\frac{a}{2} \right)^{2n-4}(2p_2 - ap_1)^2, \quad (n > k \geq 2) \] (35)
where \(D(n) \) is defined by (9) and (10).

Proof. Putting \(m = 1, 2, ..., k \) in (30) and (31) and summing up the resulting relations, we obtain
\[D(n + k + 1)D(n - k) - D(n + 1)D(n) = -\frac{1}{2}\left(\frac{a}{2} \right)^{2n-3}(2p_2 - ap_1)^2 \sum_{i=1}^{k} i \]
and
\[D(n + k)D(n - k) - D(n + 1)D(n - 1) = -\frac{1}{4}\left(\frac{a}{2} \right)^{2n-4}(2p_2 - ap_1)^2 \sum_{i=1}^{k} (2i - 1). \]
The substitution of the summations in the previous equations implies (34) and (35). \(\square \)
3. APPLICATIONS

3.1. FIBONACCI NUMBERS

Since $F(n) = U(n, 1, 1, 1, 1)$, we get from Theorems 2 and 3 the following properties:

$$F(n + m + 1)F(n - m) - F(n + m)F(n - m + 1) = (-1)^{n-m-1}F(2m),$$

$$n > m \geq 1, \quad (36)$$

$$F(n + m)F(n - m) - F(n + m - 1)F(n - m + 1) = (-1)^{n-m-1}F(2m - 1),$$

$$n > m \geq 2, \quad (37)$$

$$F(n + k + 1)F(n - k) - F(n + 1)F(n) = \frac{(-1)^{n-k-1}}{5}[-(1)^{k+1} + F(2k + 2) + F(2k)], \quad n > k \geq 1, \quad (38)$$

and

$$F(n + k)F(n - k) - F(n + 1)F(n - 1) = \frac{(-1)^{n-k}}{5}[3(-1)^{k+1} - F(2k + 1) + F(2k - 1)], \quad n > k \geq 2. \quad (39)$$

3.2. LUCAS NUMBERS

Since $L(n) = U(n, 1, 3, 1, 1)$, we get from Theorems 2 and 3 the following properties:

$$L(n + m + 1)L(n - m) - L(n + m)L(n - m + 1) = (-1)^{n-m-1}5F(2m),$$

$$n > m \geq 1, \quad (40)$$

$$L(n + k + 1)L(n - k) - L(n + 1)L(n) = (1)^{n-k}[-(1)^{k+1} + F(2k + 2) + F(2k)], \quad n > k, \quad (41)$$

$$L(n + m)L(n - m) - L(n + m - 1)L(n - m + 1) = (-1)^{n-m-1}5F(2m - 1),$$

$$n > m \geq 2, \quad (42)$$

and

$$L(n + k)L(n - k) - L(n + 1)L(n - 1) = (1)^{n-k+1}[3(-1)^{k-1} - F(2k + 1) - F(2k - 1)], \quad n > k \geq 2. \quad (43)$$
3.3. PELL NUMBERS

Since \(P(n) = U(n, 1, 2, 2, 1) \), we get from Theorems 2 and 3 the following properties:

\[
P(n + m + 1)P(n - m) - P(n + m)P(n - m + 1) = (-1)^{n-m-1}P(2m),
\]
\[
n > m \geq 1, \quad (44)
\]

\[
P(n + k + 1)P(n - k) - P(n + 1)P(n)
= \frac{(-1)^{n-k-1}}{8}[2(-1)^{k+1} + P(2k + 2) + P(2k)], \quad n > k, \quad (45)
\]

\[
P(n + m)P(n - m) - P(n + m - 1)P(n - m + 1) = (-1)^{n-m-1}P(2m - 1),
\]
\[
n > m \geq 2, \quad (46)
\]

and

\[
P(n + k)P(n - k) - P(n + 1)P(n - 1)
= \frac{(-1)^{n-k}}{8}[6(-1)^{k-1} - P(2k + 1) - P(2k - 1)], \quad n > k \geq 2. \quad (47)
\]

3.4. THE CLASS \(R(n, a) \)

Since \(R(n, a) = U(n, 1, a, a, 1) \), we get from Theorems 2 and 3 the following properties:

\[
R(n + m + 1, a)R(n - m, a) - R(n + m, a)R(n - m + 1, a)
= (-1)^{n-m-1}R(2m, a), \quad n > m \geq 1
\]
\[
\quad (48)
\]

and

\[
R(n + m, a)R(n - m, a) - R(n + m - 1, a)R(n - m + 1, a)
= (-1)^{n-m-1}R(2m - 1, a), \quad n > m \geq 2. \quad (49)
\]

Two more properties similar to (38) and (39) can be written for \(R(n, a) \).

4. FIBONACCI \(Q - \) TYPE MATRICES

The Fibonacci \(Q \) -matrix had been defined first by Honsberger [5] as follows:

\[
Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix},
\]
\[
\quad (50)
\]
where \(F_n \) is a Fibonacci number. He showed that

\[
Q^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}
\]

(51)

and noticed that the Fibonacci \(Q \)-matrix is a good tool for getting a number of important identities related to Fibonacci numbers. It seems that Fibonacci \(Q \)-matrix belongs to a larger class of matrices that satisfies (50) and (51). In this section we construct this class of matrices, where we can define, for example, Pell \(P \)-matrix, which is similar to Fibonacci \(Q \)-matrix. For this purpose, we start by solving the following quadratic difference equation

\[
X(n + 2) = a X(n + 1) + b X(n),
\]

(52)

where \(a \) and \(b \) are nonzero real numbers and \(X(.) \) is a \(2 \times 2 \) matrix.

Lemma 2. The general solution of equation (52) is given by \(X(n) = c_1 A^n + c_2 B^n \), where

\[
A = \begin{pmatrix} a_{11} & q \\ r & a_{22} \end{pmatrix},
B = \begin{pmatrix} b_{11} & q \\ q & b_{22} \end{pmatrix},
\]

(53)

\[
a_{11} = b_{22} = \frac{1}{2} \left(a + \sqrt{a^2 + 4b - 4qr} \right),
a_{22} = b_{11} = \frac{1}{2} \left(a - \sqrt{a^2 + 4b - 4qr} \right)
\]

and \(q, r \) are arbitrary real numbers.

Proof. It suffices to show that \(A^n \) is a solution of Eq. (52). If we observe that \(\text{tr} A = a \) and \(\det A = -b \neq 0 \), then

\[
A^2 - aA - b = 0.
\]

(54)

Therefore \(X(n) = A^n \) is a solution of equation (52). \(\square \)

Definition 1. \((Q-) \) class We say that a symmetric matrix \(A = \begin{pmatrix} u & v \\ v & z \end{pmatrix} \) belongs to the class \(Q \) if:

\((Q_1)\) \(A \) satisfies Eq. (54).

\((Q_2)\) \(u = av + bz \), where \(a \) and \(b \) are given numbers.

The following lemma characterizes all matrices that belong to the class \(Q \).

Lemma 3. Let \(q_1 \) and \(q_2 \) be solutions of

\[
q^2 + \frac{a^2(b - 1)}{a^2 + (b + 1)^2} q - b = 0.
\]

(55)
Then there are two matrices belong to the class Q: $A_i = \begin{pmatrix} p_i & q_i \\ q_i & s_i \end{pmatrix}$, $(i = 1, 2)$ corresponding to a and b, where

$$p_i = \frac{a(b + q_i)}{b + 1}, \quad s_i = \frac{a(1 - q_i)}{b + 1}, \quad i = 1, 2.$$

(56)

Proof. The matrix $A = \begin{pmatrix} p & q \\ q & s \end{pmatrix}$ belongs to the class Q if

$$p + s = a, \quad q^2 - ps = b, \quad p = aq + bs.$$

(57)

The conclusion follows directly by solving equations (57).

Example 1. Let $a = \frac{7}{2}$ and $b = 6$. Then

$$A_1 = \begin{pmatrix} 3 & -3 \\ -3 & 2 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 4 & 2 \\ 2 & -\frac{1}{2} \end{pmatrix}$$

are the corresponding matrices that belong to Q.

Remark 1. We notice that $A \in Q$ does not imply that $A^n \in Q$ as the following example shows.

Example 2. The direct computations show that A_2 in Example 1 does not satisfy both conditions Q_1 and Q_2.

Definition 2. ($S-$ class) We say that a symmetric matrix $A = \begin{pmatrix} u & v \\ v & z \end{pmatrix}$ is S, if for given numbers a and b, we have $u = av + bz$ and $u_n = av_n + bz_n$, where $A^n = \begin{pmatrix} u_n & v_n \\ v_n & z_n \end{pmatrix}$.

The following theorem characterizes the class S.

Theorem 5. (i) A necessary and sufficient condition so that a nonsingular matrix $A = \begin{pmatrix} aq + bs & q \\ q & s \end{pmatrix}$ belongs to the class S is $b = 1$, where a, q and s are arbitrary numbers.

(ii) If $\det A = 0$, then $A \in S$ if and only if it has the form

$$A = \begin{pmatrix} ak + b & k \\ k & 1 \end{pmatrix},$$

(58)

where a, b are given numbers and k is a solution of the equation $k^2 - ak - b = 0$.

Proof. Let \(\lambda_1 \neq \lambda_2 \) be the eigenvalues of the matrix \(A = \begin{pmatrix} p & q \\ q & s \end{pmatrix} \) with \(p = aq + bs \).

It is known that \(A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1} \), where

\[
P = \begin{pmatrix} q & q \\ \lambda_1 - p & \lambda_2 - p \end{pmatrix}.
\]

Therefore

\[
A^n = \frac{1}{\det A} \begin{pmatrix} p_n & q_n \\ q_n & s_n \end{pmatrix},
\]

where

\[
p_n = q[\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n - p(\lambda_1^n - \lambda_2^n)], \quad q_n = q(\lambda_2^n - \lambda_1^n),
\]

\[
s_n = pq(\lambda_1^n - \lambda_2^n) - q(\lambda_1^{n+1} - \lambda_2^{n+1}).
\]

The matrix \(A^n \) belongs to the class \(S \) if and only if

\[
p_n - (aq_n + bs_n) = 0.
\]

If we notice that \(\lambda_1 + \lambda_2 = p + s \) and \(\lambda_1 \lambda_2 = ps - q^2 \), then from (61) we obtain for \(q \neq 0 \) that

\[
\frac{1}{q}[p_n - (aq_n + bs_n)] = \lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n + (-p + aq - pb)(\lambda_1^n - \lambda_2^n) + b(\lambda_1^{n+1} - \lambda_2^{n+1})
\]

\[
= \lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n - b(p + s)(\lambda_1^n - \lambda_2^n) + b(\lambda_1^{n+1} - \lambda_2^{n+1})
\]

\[
= \lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n - b(\lambda_1 + \lambda_2)(\lambda_1^n - \lambda_2^n) + b(\lambda_1^{n+1} - \lambda_2^{n+1})
\]

\[
= (1 - b)(ps - q^2)(\lambda_1^{n-1} - \lambda_2^{n-1}).
\]

(i) If \(\det A \neq 0 \), then from (63) it follows that (62) is satisfied if and only if \(b = 1 \).

(ii) If \(\det A = 0 \), then (62) is satisfied and we have \(aq + bs = kq \) and \(q = ks \) for some \(k \) and \(s \). Therefore, \(A = \begin{pmatrix} (ak + b)s & ks \\ ks & s \end{pmatrix} \), where \(k^2 - ak - b = 0 \). Without loss of generality we put \(s = 1 \). This completes the proof. \(\square \)

Example 3. Let \(a = 2 \) and \(b = 3 \). Then \(k = 1 \) or \(k = 3 \). Thus we get the two matrices of \(S - \) class:

\[
A_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix}.
\]

Example 4. Let \(a = 2, \) \(q = 3 \) and \(s = -2 \) with \(b = 1 \) we get the following matrix of \(S - \) class:

\[
A = \begin{pmatrix} 5 & 3 \\ 3 & -1 \end{pmatrix}.
\]
It is clear that \(A \notin Q \) because \(A^2 - 2A - I \neq 0 \).

It is natural to look for solutions of equation (52) that belong to the class \(S \). In fact, these solutions belong to \(Q \cap S \). The following theorem gives the answer.

Theorem 6. The only two types of matrices that belong to \(S \cap Q \) are given by

\[
H(a) = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}, \quad K(a) = \begin{pmatrix} 0 & -1 \\ -1 & a \end{pmatrix} = -H^{-1}(a),
\]

provided that \(b = 1 \) in equation (52) and \(a \) is a real number.

Proof. For any given numbers \(a \) and \(b \), it follows from Lemma 8 that there are two matrices \(A_1 \) and \(A_2 \) belong to \(Q \). Theorem 12 implies that \(A_1 \) and \(A_2 \) belong to \(S \), whenever \(b = 1 \). Using Eq. (55) and (56) we obtain \(A_1 = H(a) \) and \(A_2 = K(a) \).

Corollary 1. Let \(U_0(a) = 0 \), \(U_1(a) = 1 \) and \(U_2(a) = a \). Then

\[
H^n(a) = \begin{pmatrix} U_{n+1}(a) & U_n(a) \\ U_n(a) & U_{n-1}(a) \end{pmatrix}
\]

and \(K^n(a) = (-1)^n(H^n(a))^{-1} = (-1)^nH^{-n}(a) \), where

\[
U_{n+1}(a) = aU_n(a) + U_{n-1}(a).
\]

Notice that the Fibonacci \(Q - \) matrix defined by (50) is a particular case of \(H(a) \), where \(a = 1 \). Also, if we let \(a = 2 \), we come to a new matrix that we call \(P - \) matrix

\[
H(2) = P = \begin{pmatrix} P_3 & P_2 \\ P_2 & P_1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix},
\]

where \(P_n \) is a Pell number. Then by Corollary 1, we have

\[
P^n = \begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix},
\]

where \(P_{n+1} = aP_n + P_{n-1} \) for \(n \geq 1 \). The \(P - \) matrices also give a number of identities, including \(\det P^n = (\det P)^n \), which gives

\[
P_{n+1}P_{n-1} - P_n^2 = (-1)^n,
\]

\[
P_{n+1}P_{n-1} = P^{2n+1}, \quad \text{which gives}
\]

\[
\begin{pmatrix} P_{n+2} & P_{n+1} \\ P_{n+1} & P_n \end{pmatrix} \begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix} = \begin{pmatrix} P_{2n+2} & P_{2n+1} \\ P_{2n+1} & P_{2n} \end{pmatrix},
\]

\[
P_{n+1}P_{n-1} = P^{n+m-1}, \quad \text{which gives}
\]

\[
\begin{pmatrix} P_{m+1} & P_m \\ P_m & P_{m-1} \end{pmatrix} \begin{pmatrix} P_n & P_{n-1} \\ P_{n-1} & P_{n-2} \end{pmatrix} = \begin{pmatrix} P_{m+n} & P_{m+n-1} \\ P_{m+n-1} & P_{m+n-2} \end{pmatrix},
\]

\[
\quad \text{(71)}
\]
and \(P^n = P^{n-m} P^m \) which gives

\[
\begin{pmatrix}
P_{n+1} & P_n \\
P_n & P_{n-1}
\end{pmatrix} = \begin{pmatrix}
P_{n-m+1} & P_{n-m} \\
P_{n-m} & P_{n-m-1}
\end{pmatrix} \begin{pmatrix}
P_{m+1} & P_m \\
P_m & P_{m-1}
\end{pmatrix}.
\]

(72)

Similar identities for the numbers \(H_n(a) \) defined by (66) can be constructed.

REFERENCES

[7] A.F. Horadam, Special properties of the sequence \(w(n, a, b; p, q) \), *Fibonacci Quarterly*, 5 (1967), 424-434.

