BIFURCATION ANALYSIS OF AN SIR MODEL

TitleBIFURCATION ANALYSIS OF AN SIR MODEL
Publication TypeJournal Article
Year of Publication2016
AuthorsM. AMALEH, KARIMI, DASI, A
Secondary TitleCommunications in Applied Analysis
Volume20
Issue3
Start Page317
Pagination8
Date Published09/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS92C60, 92D30
Abstract

This paper is devoted to study a three dimensional Susceptible-Infected-Recovered (SIR) epidemic model. The stability of the equilibrium points in dynamical models is one of the most important issues. Here so we will study the stability of equilibrium points of the epidemic model by using bifurcation theory. For this purpose, we investigate transcritical, pitchfork and saddle-node bifurcation points.
 

URLhttp://www.acadsol.eu/en/articles/20/3/4.pdf
DOI10.12732/caa.v20i3.4
Short TitleBIFURCATION ANALYSIS
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] W.O. Kermack, A.G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond A, 115 (1927), 700-721.
[2] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.
[3] J.D. Murray, Mathematical Biology: I. An Introduction, Springer-Verlag, New York-Berlin-Heidelberg, 2002.
[4] D.J. Daley, J. Gani, Epidemic Modeling: An Introduction, Cambridge University Press, Cambridge, 2005.
[5] F. Brauer, P. van den Driessche, J. Wu (Eds.), Lecture Notes in Mathematical Epidemiology, Springer-Verlag, Berlin, Heidelberg, 2008.
[6] M. Andriychuk, Numerical Simulation from Theory to Industry, Intech (2012).
[7] J. Guckenheiner, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, 1993.
[8] L. Perco, Differential Equations and Dynamical Systems, Springer-Verlag, 1991.