REFERENCES
[1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373–380, doi: 10.1155/S102558349800023X
[2] D.R. Anderson, B. Gates, D. Heuer, Hyers-Ulam stability of second-order linear dynamic equations on time scales. Commun. Appl. Anal. 16 (2012), no. 3, 281– 291.
[3] S. Andr´as, A.R. Meszaros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219 (2013), no. 9, 4853–4864, doi: 10.1016/j.amc.2012.10.115
[4] B. Aulbach, S. Hilger, Linear dynamic processes with inhomogeneous time scales, in Nonlinear Dynamics and Quantum Dynamical Systems. Akademie Verlage, Berlin, 1990.
[5] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkh¨auser, Boston, (2001), doi: 10.1007/978-1-4612-0201-1
[6] E. A. Bohner, M. Bohner and F. Akin, Pachpatte Inequalities on time scale, J. Inequal. Pure. Appl. Math. 6 (2005), no. 1, Art 6.
[7] L.O. Chua, L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst. 35 (1988), 1257–1272, doi: 10.1109/31.7600
[8] L.O. Chua, L. Yang, Cellular neural networks: applications, IEEE Trans. Circuits Syst. 35 (1988), 1273–1290, doi: 10.1109/31.7601
[9] J.B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309, doi: 10.1090/S0002-9904-1968-11933-0
[10] J. Gao, Q.R. Wang, L.W. Zhang, Existence and stability of almost-periodic solutions for cellular neural networks with time-varying delays in leakage terms on time scales. Appl. Math. Comput. 237 (2014), 639-649, doi: 10.1016/j.amc.2014.03.051
[11] P. Gavruta, S.-M Jung and Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electron. J. Differential Equations. 2011 (2011), no. 80, 1–5.
[12] O. Hatori, K. Kobayasi, T. Miura, H. Takagi, S. E. Takahasi, On the best constant of Hyers-Ulam stability, J. Nonlinear Convex Anal. 5 (2004), 387-393.
[13] S. Hilger, Analysis on Measure chain-A unified approch to continuous and discrete calculus, Results Math. 18 (1990), 18–56.
[14] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224, doi: 10.1073/pnas.27.4.222
[15] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135–1140, doi: 10.1016/j.aml.2003.11.004
[16] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311 (2005), 139–146, doi: 10.1016/j.jmaa.2005.02.025
[17] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), 854–858, doi: 10.1016/j.aml.2005.11.004
[18] S.-M. Jung, A fixed point approach to the stability of differential equations y ′ = F(x, y), Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 47–56.
[19] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011, doi: 10.1007/978-1-4419-9637-4
[20] T. Kulik and C. C. Tisdell, Volterra integral equations on time scales: Basic qualitative and quantitative results with applications to initial value problems on unbounded domains, Int. J. Difference Equ. 3 (2008), no 1, 103–133.
[21] Y. Li and Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Internat. J. Math. Math. Sci. 2009 (2009), Article ID 576852, doi: 10.1155/2009/576852
[22] Y. Li, Hyers-Ulam stability of linear differential equations y ′′ = λ 2 y, Thai J. Math. 8 (2010), no. 2, 215–219.
[23] Y. Li, L. Hua, Hyers-Ulam stability of a polynomial equation. Banach J. Math. Anal. 3 (2009), no. 2, 86–90, doi: 10.15352/bjma/1261086712
[24] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010), 306–309, doi: 10.1016/j.aml.2009.09.020
[25] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japan. 55 (2002), 17–24.
[26] T. Miura, S.-M. Jung and S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations y ′ = λy, J. Korean Math. Soc. 41 (2004), 995–1005, doi: 10.4134/JKMS.2004.41.6.995
[27] T. Miura, M. Miyajima and S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90–96, doi: 10.1002/mana.200310088
[28] T. Miura, H. Oka, S.-E. Takahasi and N. Niwa, Hyers-Ulam stability of the first order linear differential equation for Banach space-valued holomorphic mappings, J. Math. Inequal. 3 (2007), 377–385, doi: 10.7153/jmi-01-32
[29] M. Ob loza, Hyers stability of the linear differential equation, Rocznik Nauk.- Dydakt. Prace Mat. 13 (1993), 259–270.
[30] M. Ob loza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141–146.
[31] H. Rezaei, S.-M. Jung and Th.M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), 244– 251, doi: 10.1016/j.jmaa.2013.02.034
[32] X.J. Sun, M. Perc, Q.S. Lu, J. Kurths, Spatial coherence resonance on diffusive and small-world networks of Hodgkin-Huxley neurons, Chaos 18 (2008), 023102. 7pp, doi: 10.1063/1.2900402
[33] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y ′ = λy, Bull. Korean Math. Soc. 39 (2002), 309–315, doi: 10.4134/BKMS.2002.39.2.309
[34] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.
[35] Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Delay-enhanced coherence of spiral waves in noisy HodgkinCHuxley neuronal networks, Phys. Lett. A 372 (2008), 5681–5687.
[36] H. Zhang, J.Y. Shao, Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms, Appl. Math. Comput. 219 (2013), 11471– 11482, doi: 10.1016/j.amc.2013.05.046